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Antônio Carlos Avenue, 6627 – CEP 31270-901 – School of Engineering – Block 1 – 4th floor, room 4215, Pam-
pulha, Belo Horizonte – MG, Brazil
thaiannesimo@gmail.com, felicio@dees.ufmg.br, bu caroline@hotmail.com

Abstract. The present work aims to evaluate the performance of the Stable Generalized Finite Element Method
(SGFEM), a relatively new approach that derives from a simple modification of enrichment functions used in
Generalized/eXtended Finite Element Method (G/XFEM), in the analysis of a three-point bending test. For this,
different crack propagation simulations are performed using the standard Heaviside Function, its linear modifica-
tion as proposed by Gupta et al. [1] and a version that employs a stabilization parameter, presented in Wu and
Li [2]. A cohesive crack model is considered and linear elastic material is assumed for the numerical experi-
ments. Equilibrium paths, as well as the scaled condition numbers (SCNs), calculated at each step, are evaluated
by SGFEM and compared with the results obtained by G/XFEM. This work is related to a proposal of expan-
sion of the INSANE (INteractive Structural ANalysis Environment) system, an open source project developed at
the Structural Engineering Department of the Federal University of Minas Gerais. This platform has enabled the
resources that allowed the analysis and discussions carried out in this work.

Keywords: Stable Generalized Finite Element Method, Generalized Finite Element Method, Computational Me-
chanics, Object Oriented Programming, JAVA.

1 Introduction

Structural collapse is often the consequence of localized failure in solids, i.e., a manifestation of concentration
of defects, such as cracks in concrete [2]. It is important, therefore, to properly evaluate residual structural safety
once those defects appear to prevent potential catastrophic collapse. Modeling crack propagation can be, however,
burdensome when using Finite Element Method (FEM). In order to circumvent this limitation and aiming to com-
bine some of the advantages of Meshless Methods (MM) with the use of a finite element mesh the Generalized
Finite Element Method (GFEM) [3–5] was proposed. Since this formulation, as stated by Belytschko et al. [6], can
be considered equivalent to the one developed by Northwestern school with the name of eXtended Finite Element
Method (XFEM) [7, 8], such approach will be called in this paper Generalized/eXtended Finite Element Method
(G/XFEM).

According to Sanchez-Rivadeneira and Duarte [9], G/XFEM can be understood as a FEM with a enriched
test/trial space. This space is constructed by augmenting the standard finite element approximation spaces with
the enrichment functions, which usually contain a-priori knowledge about the solution of the problem. G/XFEM
has been, in the past few decades, widely accepted and applied with success to problems involving cracks. In fact,
this approach is available nowadays in commercial software like ANSYS and Abaqus. However, some G/XFEM
shortcomings are noteworthy. An important concern is the ill-conditioning of system matrix. This issue may cause
reduction of the convergence rates of an iterative solution scheme or severe loss of digits in a direct method [2].
The other drawback here considered is G/XFEM performance in the existence of the so-called blending elements
[10], which appear when enrichment functions are only applied locally in the domain. Those elements can not
reproduce exactly the enrichment functions. Therefore, in general, the discretization error in the blending elements
might be higher than the one verified in the other elements.

Among all the techniques that have been developed to deal with those issues is the modification of enrich-
ment functions. Particularly, the simple enrichment modification proposed by Babuška and Banerjee [11] - which
consists in subtracting from a enrichment function its FE interpolant - with the name of Stable Generalized Finite
Element Method (SGFEM) has caught attention because of its potentialities. Babuška and Banerjee [11] showed
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mathematically for 1-D problems that SGFEM yields matrices with a condition number with the same order of
FEM, and orders of magnitude smaller than in the G/XFEM case. Gupta et al. [1] and Gupta et al. [12] have
obtained numerically similar results for 2-D and 3-D fracture mechanics problems, respectively. Furthermore,
SGFEM is able to address with the error due to blending elements [1, 13]. The extension of the ideas presented
in [11] for SGFEM to other dimensions was not, however, always straightforward. As stated by Oliveira et al.
[13], the search for a stable version of G/XFEM as defined by Zhang et al. [14] - namely, a method that yields the
optimal order of convergence with a conditioning that is not worse than that of FEM independently of the mesh
- has still been pursued. Among the works that dealt with this search, it is noteworthy to mention the one of Wu
and Li [2], that handles cohesive crack propagation problems with SGFEM using a modified version of Heaviside
function; the one of Zhang et al. [15], in which the SGFEM proposed in [1] shows lack of robustness, considering
the relative position between the discontinuity and the mesh, in a Poisson problem; and the ones of Zhang et al.
[16] and Zhang and Babuška [17], that deal with the use of different partitions of unity (PoUs) combined to the
stable strategy proposed by Babuška and Banerjee [11].

Considering those interesting features concerning SGFEM and its versions, this paper aims to study the
performance of different SGFEM strategies to simulate cohesive crack propagation in a three-point bending test.
To the best knowledge of the authors, SGFEM has only been applied to cohesive crack propagation in the work of
Wu and Li [2]. Those authors employed a modified version of Heaviside function, with a stabilization parameter.
The effects of using the linear Heaviside functions, as proposed by Gupta et al. [1] for maintaining the optimal
rates of convergence in 2-D fracture mechanics problems, have not been investigated yet. Those results will be
compared, in terms of equilibrium paths and condition numbers, to the ones obtained using standard Heaviside
function under G/XFEM approach.

2 Model problem

2.1 Governing equations

For conciseness, the strong and the weak forms of the governing equations will not be shown in this paper.
The authors used the formulations presented in the work of Wang and Waisman [18] as a reference for the problem
here studied.

2.2 Cohesive law

The cohesive law adopted in this work is based on a simplification of the formulation presented by Wells and
Sluys [19], where the normal traction force tn transmitted across the discontinuity is defined as

tn = ft exp

(
− ft
Gf

κ

)
(1)

where ft is the tensile strength of the material, Gf is the fracture energy and κ is a history parameter, equal to the
largest value of normal crack opening JuKn reached. The shear traction ts acting on the discontinuity surface is
computed from

ts = dinitJuKs (2)

where dinit is the initial crack shear stiffness (when κ = 0) and JuKs is the crack sliding displacement.

2.3 Enrichment functions

The enrichment function selected to simulate cohesive crack propagation with G/XFEM is the standard Heav-
iside function, defined as

H(x, y) =

 1, if ȳ ≤ 0

0, if ȳ > 0
for a local coordinate ȳ, normal to the crack segment. (3)
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In the case of SGFEM, two strategies are considered. The first one was proposed by Gupta et al. [1] as linear
Heaviside enrichment functions:

HjL(x, y)− Iωj
(HjL(x, y))(x) =

{
H,H (x− xj)

hj
,H (y − yj)

hj

}
− Iωj

(HjL(x, y))(x) (4)

where H is expressed by Eq. (3) and hj is a scaling factor given by the largest distance of node xj to the other
nodes of cloud ωj . Iωj (HjL(x, y))(x) is the finite element interpolant, defined as [1]:

Iωj
(Lji)(x) =

ne∑
k=1

Nk(x)Lji(xk) (5)

where Lji is an enrichment function, vector xk has the coordinates of node k of element e, Nk is the piecewise
linear FE shape function for node k, and ne is the number of element nodes. The second strategy was proposed by
Wu and Li [2] and is computed from:

Hjmod(x, y) = H(x, y)− [αIωj
(H(x, y))(x) + (1− α)H(xj , yj)] (6)

where H(xj , yj) is the Heaviside function from Eq. (3) computed at the node xj and 0 ≤ α ≤ 1 is a stabilization
parameter.

3 Numerical Examples

In this section, the performances of the SGFEMs (namely, strategies that employ the FE interpolant subtrac-
tion from enrichment functions, as in [11]) proposed by Gupta et al. [1] and Wu and Li [2], with different Heaviside
functions, are compared to the one of G/XFEM with standard Heaviside function (Eq. (3)) through two numerical
experiments performed with the beam of Fig. 1.

Figure 1. Three-point bending test used in the experiments carried out in this section [20].

As in Wu and Li [2], linear elastic material is considered. The following parameters were used: Young’s
modulus E = 44000.0 N/mm2, Poisson’s ratio ν = 0.2, tensile strength ft = 3.8 N/mm2, fracture energy
Gf = 0.164 N/mm and initial crack shear stiffness dinit = 61.111 N/mm3. This last parameter was computed
considering that dinit = βrG/lc, with βr = 0.05, G = E/2(1 + ν) and where lc is the crack increment size.
For the simulations performed in this paper, the crack increment is equal to finite elements height, 15 mm. Plane
stress condition is assumed. Both experiments in sections 3.1 and 3.2 were made using Q4 elements. Numerical
integration in the elements crossed by the discontinuity was performed using triangular subdivision implemented in
[21], with three-point and six-point Gaussian quadrature in each triangular sub-domain for G/XFEM and SGFEM
strategies, respectively. The remaining elements were integrated with 4×4 points. Finally, integration on the crack
boundary was performed with two and three points for G/XFEM and SGFEM strategies, respectively.

For experiments presented in sections 3.1 and 3.2, three values of the stabilization parameter α, proposed in
[2], were studied: 0.1, 0.5 and 1.0 (named SGFEM α = 0.1, SGFEM α = 0.5 and SGFEM α = 1.0 at the graph-
ics). The G/XFEM and the SGFEM as formulated by Gupta et al. [1] are identified with the labels G/XFEM and
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SGFEM Lin. The non-linear analysis is performed with displacement control, with an increment of 0.0015 mm
in the horizontal displacement of the right support (Fig. 1), a tangent constitutive tensor approximation, a con-
vergence absolute tolerance of 1 × 10−4 in terms of force, and a reference load P = 1.0 N . Conditioning is
evaluated, at each step of the analyses, using the scaled condition number, as defined by Gupta et al. [1]. The crack
propagates from a initial notch, which is inserted using Heaviside enrichment functions (Figs. 2 and 5).

3.1 Experiment 1

The major goal of this section is to analyze the performances of the SGFEMs that employ the stabilization
parameter (determined in a heuristic way), since in the work of Wu and Li [2], for large values of α, they do not
conduct to good results. The mesh used in the experiments here presented is depicted in Fig. 2 (with 15 x 24
divisions). Fig. 3 shows the equilibrium paths obtained for each of the methods here studied, while Fig. 4 depicts
the scaled condition number at each step.

Figure 2. Mesh used in the experiments carried out in this section.
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Figure 3. Equilibrium paths obtained with the mesh of Fig. 2, using different Heaviside enrichment functions.

It is possible to see in Fig. 3 that the equilibrium paths obtained with G/XFEM, SGFEM Lin and SGFEM
α = 0.1 are almost concordant. Moreover, these responses can be considered accurate in the sense of what Wu
and Li [2] call stress locking-free response: the vanish load capacity is well represented during the entire path.
This is not always true for larger α values as we can see, for example, with SGFEM α = 1.0, where the response
shows eventually increasing load capacity, even though the crack is propagating and opening widely. Wu and Li [2]
ascribe such behavior to the incapability of the SGFEM α = 1.0 for reproducing the relative rigid body rotations.

Fig. 4 reveals that, despite some oscillations, the best results for conditioning are obtained by SGFEM
α = 0.1. Although SGFEM α = 0.5 and SGFEM α = 1.0 start the simulation with the lowest values for
scaled condition numbers, they suffer some instabilities during the analyze and reach comparatively large values
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Figure 4. Scaled Condition Numbers C(K̂), at each step, computed through the mesh of Fig. 2. Different
Heaviside enrichment functions are employed.

for C(K̂). This result differs from the ones obtained by Wu and Li [2], where those two approaches not only
achieved relative low values for condition number but also were stable with respect to this aspect while the crack
propagated. Fig. 4 also shows that G/XFEM and SGFEM Lin had similar behaviors.

3.2 Experiment 2

This section aims to study the robustness of the approaches here considered. Since Zhang et al. [15] and
Oliveira et al. [13] have observed that SGFEM using linear Heaviside functions may not be well-conditioned for
any mesh configuration, the authors tried to created a mesh with an unfavorable design, as shown in Fig. 5(with
14 x 24 divisions). Furthermore, the standard Heaviside enrichment function with G/XFEM can also be sensitive
to the location of the discontinuity relative to element nodes [22]. Fig. 6 shows the equilibrium paths obtained for
each of the methods here studied, while Fig. 7 depicts the scaled condition number at each step.

Figure 5. Mesh used in the experiments carried out in this section.

The behaviors shown in Fig. 6 are quite similar to those discussed in section 3.1. The major difference is
that, in the new mesh configuration, SGFEM α = 1.0 provided a more consistent response, even though a stress
locking-free behavior is not completely achieved. The equilibrium paths obtained by SGFEM approaches with
larger α are still a little more ductile than the ones provided by the other strategies.

On the other hand, Fig. 7 shows that SGFEM α = 0.1 is robust considering the relative position between the
discontinuity and the mesh. Once more, this approach reaches the best results for conditioning. It is interesting to
note, however, that G/XFEM seems robust as well. In fact, the authors could not see, in the experiments made so
far, ill-conditioning/instability related to the use of standard Heaviside functions in G/XFEM regardless the mesh
configuration. Nevertheless, the lack of robustness of SGFEM Lin can be easily seen in Fig. 7, specially in the last
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Figure 6. Equilibrium paths obtained with the mesh of Fig. , using different Heaviside enrichment functions.

0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42

104
105
106
107
108
109
1010

Displacement at the right support (mm)

C
(K̂

)

G/XFEM
SGFEM Lin
SGFEM α = 0.1

SGFEM α = 0.5

SGFEM α = 1.0

Figure 7. Scaled Condition Numbers C(K̂), at each step, computed through the mesh of Fig. . Different Heaviside
enrichment functions are employed.

steps of the analysis. SGFEM α = 0.5 and SGFEM α = 1.0 had similar results considering the ones discussed in
section 3.1.

4 Conclusions

The use of the linear Heaviside function [1] under the SGFEM strategy in a cohesive crack propagation
model was investigated. This investigation was motivated by the significant accuracy obtained by this approach
in linear fracture mechanics problems, in the works of Gupta et al. [1] and Oliveira et al. [13], for example.
However, the lack of robustness of such strategy was once more verified. The approach proposed by Wu and Li
[2] demonstrated to be, for a small value of stabilization parameter α, in the experiments carried out in this work
- specially chosen for validating computational implementation - a trade-off between accuracy and conditioning.
Since this parameter is determined in a heuristic way, however, more experiments are necessary to study its stability.
G/XFEM using standard Heaviside function strategy has also had a good and balanced performance considering
conditioning and accuracy. Since its lack of robustness [22] could not been seen in the experiments made so
far, this approach can also be considered an interesting option for the simulation of cohesive crack propagation
problems. Computational efficiency of both strategies may be studied in future works, as well as the influence of
mesh refinement on G/XFEM conditioning, or of using polynomial and trigonometric enrichment functions, for
different numerical experiments.
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[14] Zhang, Q., Banerjee, U., & Babuška, I., 2018. Strongly Stable Generalized Finite Element Method (SS-
GFEM) for a non-smooth interface problem. Computer Methods in Applied Mechanics and Engineering, vol. 344,
pp. 538–568.
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