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Abstract. The Generalized Finite Element Method (GFEM) was developed in order to overcome some limitations
inherent to the Finite Element Method (FEM), related to the defects propagation, presence of large deformations
or even in the description of high gradients of state variables. The GFEM enriches the space of the polynomial
FEM solution with a priori known information based on the concept of Partition of Unit (PoU). Certain obstacles of
nonlinear analysis can be mitigated with the GFEM, and damage and plasticity fronts can be accurately represented.
In this context, the global-local approach to the GFEM (GFEM global-local) was proposed. The success of its
application to problems of Linear Elastic Fracture Mechanics is already proven, but its extension to the simulation
of collapse of structures made of quasi-brittle media is still a vast field to be researched. Here, a coupling strategy
is presented based on the global-local GFEM to describe the deterioration process of quasi-brittle media, such
as concrete, in the context of Continuous Damage Mechanics. The numerical solution used to enrich the global
problem, represented by a coarse mesh, is obtained through physically nonlinear analysis performed only in the
local region where damage propagation occurs, represented by constitutive models. The linear analysis of the
global region is performed considering the incorporation of local damage through the global-local enrichment
functions and damage state mapped from local problem. Numerical examples of three-point bending notched
concrete beams have been presented to evaluate the performance of the proposed approach and the obtained results
were compared with the experimental results and with the ones obtained with standard GFEM. Two constitutive
models were applied to represent the concrete in the local region: smeared crack model and microplane model.
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1 Introduction

The application of the GFEM to the nonlinear analysis and representation of the damage and plasticity fronts
is well consolidated. In this context, the GFEM global-local was proposed by Duarte and Babuška [1] and widely
studied by authors such as Kim et.al [2], Freitas et.al [3] and Kim and Duarte [4]. The latter, in particular, applied
the global-local GFEM in the three-dimensional analysis of the propagation of cohesive cracks in concrete struc-
tures. Recently, Evangelista Jr. et.al [5] proposed the formulation and development of GFEM global-local strategy
which incorporates a Continuum Damage Model that uses scalar damage variable for quasi-brittle materials to
simulate failure in mode I and mixed-mode crack propagation.

In this paper, a global-local approach to the GFEM based on Kim and Duarte [4] is applied to describe the
deterioration process of quasi-brittle media within the context of Continuous Damage Mechanics, by assuming
two constitutive models to represent the concrete in the local region: smeared crack model of fixed direction with
the Carreira and Chu [6, 7] stress-strain laws and microplane model of Leukart and Ramm [8]. The numerical
solution used to enrich the global problem is obtained through physically nonlinear analysis performed only in the
local region. With the damage of the local region incorporated into the global problem, through the global-local
enrichment functions, the linear analysis is performed in the global region. This process is carried out in blocks
of global-local analysis able to capture the evolution of the deterioration process and their influence on the global
behavior of structures.
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This GFEM global-local approach was implemented by Monteiro [9] in the computational system INSANE
(INteractive Structural ANalysis Environment) (Gori et.al [10]), and in the section 2 the implemented formulation
is summarized. Section 3 presents two sets of numerical examples (one with the smeared crack model and the
other with de microplane model) of three-point bending notched concrete beams to evaluate the performance of
the proposed approach. The obtained results were compared with the experimental results and with the ones
obtained with standard GFEM.

2 Formulation

Each block of global-local analysis has three stages:
Stage 1. Initial and estimated linear global problem
For the initial linear global problem, step k = 0, the domain is defined by Ω̄G = ΩG ∪ ∂ΩG in Rn. The

vector field u0
G,0 is the approximate solution of the weak form of the initial global problem:∫

ΩG

σσσ(u0
G,0) : εεε(v0

G,0) dx +

∫
∂ΩuG

u0
G,0 · v0

G,0 ds =∫
∂ΩσG

t̄ · v0
G,0 ds +

∫
∂ΩuG

ū · v0
G,0 ds, (1)

where v0
G,0 are the test functions of the initial global problem, σσσ is the stress tensor, εεε is the strain tensor, t̄ is the

prescribed stress vector, and ū is the prescribed displacement vector.
The solution u0

G,0 is obtained for the entire load (load factor λ = 1) and then it is adjusted according to
the size of the displacement step PDG (predefined for the global problem in the control node). The load factor is
obtained by:

λ0 =
PDG

u0
G,0,DC

, (2)

where u0
G,0,DC is a displacement component of the control node, obtained from eq. (1).

To k ≥ 1, in the estimated linear global problem, uk
G,0 is estimated by the following expression, adapted

from Kim and Duarte[4]:

uk
G,0 =

(k + 1)

k
uk−1
G . (3)

Stage 2. Nonlinear local problem
The local problem is solved incrementally-iteratively in the local domain ΩL.The local displacement vector

uk
L is calculated by the following equation, which has boundary conditions from the initial global solution of the

Stage 1. ∫
ΩL

σσσ(uk
L) : εεε(vk

L) dx + η

∫
∂ΩL∩∂ΩuG

uk
L · vL ds =∫

∂ΩL∩ΩσG

t̄ · vk
L ds +

∫
∂ΩL\(∂ΩL∩∂ΩG)

[t(uk
G) + ηuk

G] · vk
L ds, (4)

where η is the penalty parameter, vk
L are the test functions of the local problem, and t(uk

G) is the stress vector
In this stage of each block of global-local analysis, it is necessary to solve the problem from the beginning

of the loading, up to the level of loading of the block. In order to adequately represent the problem, the number
of local steps resolved at each block is increased. The number of total local steps (NPL) solved in each block k is
given by:

NPL = PLI + [(k + 1)PLA], (5)

where PLI is the number of initial local steps, and PLA is the number of local steps added to each global-local
block.

Stage 3. Enriched linear global problem
The constitutive relation is given by σσσ = Cs : εεε, where εεε is the strain tensor and Cs is the secant approxi-

mation of the constitutive tensor adopted in the balance of the global model and obtained considering the damage
occurred in the local problem. In this stage, local solution uk

L is applied as extrinsic basis for enriching the global
problem:

{φJ}(x) = NJ(x)× uk
L, (6)
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where J is referred to nodal points, NJ is the PoU function of the initial global problem and uk
L is the local

solution, named global-local enrichment function. The global enriched problem is defined by:∫
ΩG

σσσ(uk
G) : εεε(vk

G) dx +

∫
∂ΩuG

uk
G · vk

G ds =

∫
∂ΩσG

t̄ · vk
G ds +

∫
∂ΩuG

ū · vk
G ds, (7)

The solution uk
G is obtained for the entire load (load factor λ = 1). uk

G is adjusted according to the size of
the displacement step PDG predefined for the global problem. The load factor λkE is defined as:

λkE =
(k + 1)PDG

ukG,DC

, (8)

where ukG,DC is a displacement component of the control node, obtained from eq.(7).
Figure 1 presents the solution algorithm of the proposed approach. k is the block, i is the local step and j is

the local iteration.

begin
execute();
foreach block k do

Solve Stage 1:
if k=0 then

Solve linear equation system and get u0
G,0

else
Get the estimated solution uk

G,0 = (k+1)
k

uk−1
G

end
Transfer boundary condition from Stage 1 to Stage 2;
Solve Stage 2:
foreach local step i=i+1 do

repeat
Assemble stiffness matrix [K]ij−1 ;

Get the incremental displacement
{

∆UP
}i

j
e
{

∆UQ
}i

j
;

Get the load factor increment ∆λi
j ;

Update the nodal displacement vector {U}ij = {U}ij−1 + ∆λi
j

{
∆UP

}i

j
+

{
∆UQ

}i

j
;

Update the load factor λi
j = λi

j−1 + ∆λi
j ;

Get the vector of equivalent nodal internal forces {F}ij ;
Update the residual forces vector {Q}ij = λi

j {P} − {F}ij ;

until convergence;
end
Solve Stage 3:
Enrich global problem with uk

L obtained in 2;
Solve the linear equation system and calculate uk

G;
end

end
Figure 1. Solution algorithm to the nonlinear global-local approach.

3 Numerical Simulations

Based on the three-point bending tests in notched concrete beams performed by Petersson [11], Fig. 2 illus-
trates geometry, loading (P= 800, 0 N) and boundary conditions.

In the initial global problem, it is adopted Young’s modulus E0 = 30000, 0 MPa and Poisson ratio ν = 0, 20.
In the local problems the parameters adopted for smeared crack and microplane constitutive models are presented
in the sections 3.1 and 3.2, respectively.

The beam is analyzed with the mesh shown in Fig. 3. There are 101 four-noded quadrilateral elements, total-
izing 132 nodes, and 64 elements in the local mesh, with 12 global nodes enriched with only the local numerical
solution. The eight white nodes are enriched only with the polynomial functions P1 or P2, whose approximation
functions, with monomials expressed in coordinate x, are defined by eqs.(9) and (10), respectively:

P1→ φTj (x) =

[
Nj(x) Nj(x)

(
x− xj
hj

)]
; (9)
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Figure 2. Three-point bending test.

P2→ φTj (x) =

[
Nj(x) Nj(x)

(
x− xj
hj

)
Nj(x)

(
x− xj
hj

)2
]
. (10)

In the global mesh, point A corresponds to the node whose vertical displacement is considered in the compo-
sition of the equilibrium paths. In the local mesh point B is adopted as a control node in the nonlinear analysis by
the displacement control method (Batoz and Dhatt [12]).

Figure 3. Global and local problems.

The nonlinear analysis of the local problem is performed with secant approximation to the constitutive tensor
and tolerance to convergence equals to 1 × 10−4(×100%) = 0, 010% in relation to the norm of incremental
displacements vector. In local mesh, penalty parameter is η = 3 × 1012 and there are 4 × 4 Gauss points per
element (same number in the global mesh). The following parameters were adopted: 50 global steps, 20 initial
local steps, 2 local steps added to each block of analysis, and global displacement step of 0, 020 mm.

3.1 Smeared Crack Model

Smeared Crack Model is based on monitoring the deterioration of the physical properties of the material, and
the crack evolution process is described by the gradual decay of stresses with increased strains. The parameters
obtained experimentally by Petersson [11] presented a range of values of 2, 50 N/mm2 to 3, 90 N/mm2 to the tensile
strength (ft) and of 115 N/m to 137 N/m to the fracture energy. The smeared crack model of fixed direction with
the Carreira and Chu [6, 7] stress-strain laws and plane stress state are considered in the analyzes. The material
parameters adopted are: compressive strength fc = 31, 0 MPa; tensile strength ft = 2, 70 MPa; compressive strain
εc = 0, 002; tensile strain εt = 0, 0001925; shear retention factor βr = 0, 00.

In the Fig. 4 the equilibrium path GL-P0 is far from experimental results and there is a disturbance in its
descending branch. The same behavior is seen in the equilibrium path GL-P1, but enrichment P1 reduces the load
peak in relation to GL-P0. The use of the polynomial function P2 led to the equilibrium path GL-P2 compatible
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with the experimental results of Petersson [11], both in the estimation of the maximum load and in the description
of the post-critical regime.
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Figure 4. Equilibrium paths: global-local GFEM with P0, P1 e P2 enrichment functions.

Figure 5 shows the evolution of the damage in the local problem along the GL-P2 equilibrium path. It is
observed that the damage is concentrated in the central region of the local domain corresponding to the region
between the notch and the points of application of the load in the global problem.

Figure 5. Evolution of damage.

3.2 Microplane Model

In this section, it is applied the microplane model of Leukart and Ramm [8], implemented in INSANE by
Wolenski [14]. In this model is applied a kinematic constraint with components of volumetric and deviatoric
strains, and a single damage variable that couples volumetric and deviatoric damage in the microplanes is adopted,
controlling the degradation from damage evolution functions dependent on a single equivalent strain measure.

Table 1 presents the numerical parameters to the linear, bilinear, exponential and polynomial damage func-
tions with the strain measure of de Vree et al. [13] (Wolenski [14]). The dimensionless parameters are defined as:
κ0 is the limit value of the damage initiation, κu determines the final damage value, κcr delimits an intermediate
damage value, f0 represents the material limit stress, fcr defines the intermediate stress in the post-peak branch,
αmic is the maximum degradation of the material, βmic is the the parameter that governs the shape of the post-peak
curve, fe is the equivalent stress relative to the material strength limit, and E0 is the initial elastic modulus.

Figure 6 shows the equilibrium paths GL-P0, GL-P1 and GL-P2 obtained by the four damage functions. The
general trend observed is that the application of polynomial enrichment in the nodes that surround the region where
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Table 1. Parameters of the damage functions (Wolenski [14]).

Linear
κ0 = 0, 000190 κu = 0, 00460

Bilinear
κ0 = 0, 000195 κu = 0, 0055 κcr = 0, 00155 f0 = 4, 0 fcr = 2, 25

Exponential
αmic = 0, 960 βmic = 500 κ0 = 0, 0002

Polynomial
fe = 5, 95 MPa E0 = 30000, 0 MPa κ0 = 0, 000385

the enrichments with the global-local solution are applied brings the equilibrium paths closer to the Petersson [11]
experimental results, more expressively with the aplication of the P2 enrichment. Linear and bilinear damage
functions do not represent experimental behavior well. There is a good agreement between the GL-P2 results of
the exponential and polynomial damage functions and the experimental results in the estimation of the maximum
load, and the polynomial damage function describes the equilibrium path more adequately. Figure 7 shows the

Figure 6. Equilibrium paths: global-local GFEM with P0, P1 e P2 enrichment functions.

evolution of the damage in the local problem along the GL-P2 equilibrium path. It is observed that the damage is
concentrated in the central region of the local domain corresponding to the region between the notch and the points
of application of the load in the global problem.

4 Conclusions

In the proposed GFEM global-local the evolution of the phenomena of material deterioration observed only in
the local problem and its influence on the global behavior of the structures was captured from both smeared crack
model of fixed direction with the Carreira and Chu [6, 7] stress-strain laws and microplane model of Leukart and
Ramm [8]. The responses obtained were compatible with the experimental results available in the literature and it is
concluded that the proposed global-local approach was able to improve the quality of the solution comparing with
standard GFEM. New investigations must be performed aiming to verify other numerical examples and constitutive
models.

Acknowledgements. The authors gratefully acknowledge the important support of the brazilian research agency
CNPq (in Portuguese ”Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico” - Grants 311663/2017-6,
437639/2018-5, and 304211/2019-2).

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 16-19, 2020



Monteiro, A. B., Barros, F. B., Pitangueira, R. L. S, Penna, S. S.

Figure 7. Evolution of damage to the four damage functions: vertical displacement of 1, 0 mm.
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