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Abstract. Smoothed point interpolation methods (S-PIM), when compared with the standard finite element method
(FEM) in the study of static linear problems, present interesting results due certain characteristics of their formu-
lation. In general, meshfree methods have been shown to be more accurate and efficient. The proposed study
aims to present a comparison between the Node-Based Smoothed Radial Point Interpolation Method with polyno-
mial reproduction (NS-RPIMp), Edge-Based Smoothed Radial Point Interpolation Method with polynomial repro-
duction (ES-RPIMp) and Cell-Based Smoothed Radial Point Interpolation Method with polynomial reproduction
(CS-RPIMp), applied to static linear-elastic problems. Several numerical simulations, performed using differents
strategies for support nodes selection based on the T-schemes (T3-, T4-, T6/3- and T2L-schemes), are presented,
providing a relevant amount of results that allow to understand the behaviour of each one of these methods and
schemes with respect to the accuracy and convergence rate.

Keywords: Smoothed point interpolation methods (S-PIMs), Node-based, Edge-base, Cell-based, Meshfree meth-
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1 Introduction

One of the main objectives of meshfree methods is to build a field function approximated totally in terms of
nodes, in order to ease the discretization of a domain, which in many cases is laborious when it is necessary to
construct a mesh for this purpose.

The starting point of meshfree, according to Belytschko et al. [1], was the smoothed particle hydrodynamics
(SPH) method, presented by Gingold and Monaghan [2] and Lucy [3] in 1977. From this point on, many other
methods were developed, among them the diffuse element method (DEM), introduced by Nayroles et al. [4], the
element free Galerkin (EFG) method, proposed by Belytschko et al. [5], the reproducing kernel particle method
(RKPM), developed by Liu and Chen [6], the meshless local Petrov-Galerkin (MLPG) method, introduced by
Atluri and Zhu [7] and finally the point interpolation method (PIM), proposed by Liu and Gu [8].

Compared to methods based on approximation, such as the EFG, the PIM brought some advantages, such as
the Kronecker delta function property, but some problems came together and to overcome these issues one of the
proposals was the use of a weakened-weak (W2) formulation combined with the G-space theory, which serve as
the foundations for smoothed point interpolation methods (S-PIM).

This paper presents S-PIM models applied to linear static structural problems. The node-based smoothing
point interpolation method (NS-PIM), edge-based smoothing point interpolation method (ES-PIM) and cell-based
smoothing point interpolation method (CS-PIM) together with a T-scheme for selecting nodes support were applied
in two simulations to present the performance of these methods when compared to the finite element method
(FEM). The simulations were performed using the open-source software INSANE1.

1More informations on the project can be found at https://www.insane.dees.ufmg.br/; the development code is freely available
at the Git repository http://git.insane.dees.ufmg.br/insane/insane.git.
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2 Smoothed point interpolation methods (S-PIMs)

S-PIM models stand out due to the unique characteristics of their formulation based on the weakened-weak
form. According to Liu and Zhang [9], these models were developed with the objective of being robust and
easy to use. The use of triangular background cells in two-dimensional domains makes it easy to automate the
discretization of complicated problems, the G-space theory corrects compatibility issues, ensures convergence and
stability, low interpolation order allows them to be applied in a wide range of problems and the possibility of
employing small numbers of nodes in the support domains makes them computationally efficient.

Unlike other meshfree methods, S-PIM models require the construction of smoothed strain fields, which are
performed from a set of smoothing domains where the strain is assumed to be uniform. These smoothing domains
are a tessellation of the problem domain into subdomains that must cover it without overlaps or gaps. The way
these smoothing domains will be formed and the quantity, is related to the specific S-PIM model, and can be based
on a node, edge or cell of the background mesh.

2.1 Radial point interpolation method with polynomials reproduction

The approximation of displacement field u(x) at a point x, in meshfree methods, is expressed as

u(x) =

n∑
i=1

φi(x)ui, (1)

where n is a set of nodes, φi is the nodal shape function for the ith node and ui is the nodal displacement at the ith
node.

Radial point interpolation method with polynomials reproduction (RPIMp), presented by Liu and Gu [8],
combines radial basis functions (RBF) and polynomials basis in the shape function. Thus, the approximation of
displacement field given by eq. (1) can be rewritten by

u(x) =

n∑
i=1

Ri(x)bi +

m∑
j=1

pj(x)aj = RT (x)b+ pT (x)a =
[
RT (x) pT (x)

]b
a

 , (2)

where n is a set of nodes in the neighborhood of x, m is the number of polynomial base functions, bi and aj
are coefficients associated to the RBFs and polynomials, respectively, Ri is the radial base function and pj the
monomials of the polynomial base.

The coefficients associated to the RBFs and polynomials functions, bi and aj , can be determined satisfying
eq. (2) at the n nodes within the support domain. Therefore, eq. (2) can be rewritten in matrix form byu

0

 =

RQ Pm

Pm 0

b
a

 = G

b
a

 , (3)

where G is the combined moment matrix composed by

RQ =

 R1(r1) R2(r1) ... Rn(r1)
R1(r2) R2(r2) ... Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) ... Rn(rn)

, Pm =

 P1(x1) P2(x1) ... Pm(x1)
P1(x2) P2(x2) ... Pm(x2)

...
...

. . .
...

P1(xn) P2(xn) ... Pm(xn)

. (4)

Manipulating eq. (3) and replacing it in eq. (2), the approximation of displacement field can be rewritten as
follows

u(x) =
[
RT (x) pT (x)

]
G−1

u
0

 , (5)

where the shape functions is given by

φ(x) =
[
RT (x) pT (x)

]
G−1. (6)

RPIMp shape functions satisfy the Kronecker delta property, that is an important feature because it allows a
straightforward imposition of boundary conditions.
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2.2 T-schemes for nodes selection

The same background mesh used to build the smoothing domains can also be used to select the nodes in the
support domain that will be used to build the shape functions.

Due to the ease of creation in addition to other important aspects, generally triangular type background
meshes are used to discretize the domain, thus allowing the use of the so-called T-schemes.

According to Liu and Zhang [9, 10], T-schemes have been found to be most practical, robust, efficient and
works well for the S-PIM models. Among the various existing schemes, the following are used in this work: T3-,
T4-, T6/3- and T2L-scheme.

2.3 Construction of the Smoothing Domains

In the construction of the smoothing domains, two requirements are imposed: there must be no gaps or
overlap between subdomains and they must completely cover the entire problem domain. The S-PIM models are
derived from the way the smoothing domains are built, which can be: node-base, edge-base and cell-base.

For the node-based smoothing point interpolation method (NS-PIM) [11], the smoothing domains are built
around each existing node in the domain. Taking a node as a reference, the centroids of the background cells are
connected to the mid-edge-points that are incident to the node, as shown in Fig. 1a.

In the edge-based smoothing point interpolation method (ES-PIM) [12], the smoothing domains are created
for each edge of the background cells. For this, the endpoints of the edges are connected to the centroid of the
adjacent cells, Fig. 1b.

For cell-based smoothing point interpolation method (CS-PIM) [13, 14], each cell of the background mesh
corresponds to a smoothing domain, as illustrated in Fig. 1c. This makes CS-PIM similar to the finite element
method (FEM).

(a) Node-base (b) Edge-base (c) Cell-base

Node
Cell centroid
Integration point

Figure 1. Smoothing domains

3 Numerical simulations

This section illustrates the results of the numerical simulation of two structural problems, and aims to point
out the convergence properties of the three S-PIM models discussed in the previous sections, combined with
different T-schemes for support nodes selection. The T4-scheme was used only in CS-RPIMp and T3-scheme in
ES- and NS-RPIMp, the others schemes were used in the three S-PIMs models. For comparison purposes, the
results obtained by the FEM were plotted together with the results obtained in each S-PIM model.

3.1 L-shaped panel

The L-shaped panel illustrated in Fig. 2 has a thickness equal to 100 mm and is subjected to a vertical force
F = 1400 N. The material parameters experimentally obtained by Winkler et al. [15] and adopted in the numerical
simulation are: Young’s modulus E = 25850 MPa and Poisson’s ratio ν = 0.18.

The meshfree shape functions were constructed with the radial point interpolation method with polynomials
reproduction, using the exponential radial function with c = 0.002 and 3 polynomials terms. The discretizations
used in each S-PIM model are shown in Figs. 3 to 5.

The vertical displacement of the point of load application obtained in the analysis of the L-shaped panel is
shown in Fig. 6.

The results obtained from the S-PIM models, the CS- and the ES-RPIMp followed in most cases the same
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Figure 2. L-shaped panel (measures in mm)

(a) Discretization 1 (b) Discretization 2 (c) Discretization 3 (d) Discretization 4

Figure 3. FEM and CS-RPIMp discretizations

(a) Discretization 1 (b) Discretization 2 (c) Discretization 3 (d) Discretization 4

Figure 4. ES-RPIMp discretizations

(a) Discretization 1 (b) Discretization 2 (c) Discretization 3 (d) Discretization 4

Figure 5. NS-RPIMp discretizations

tendency presented by the FEM, the displacements increasing due to the refinement of the domain. On the other
hand, as expected, NS-RPIMp presented an opposite behaviour. The CS-RPIMp when applied together the T6/3-
and T2L-scheme showed convergence superior to the FEM, whereas the T4-scheme did not present a biased be-
haviour. The ES-RPIMp showed a higher convergence than the FEM and also a biased behaviour for the three
nodal selection schemes. NS-RPIMp, as previously mentioned, has a tendency starting from higher values. In ad-
dition, only the T3-scheme that presented a tendency, the other two schemes suffered oscillations with refinement.
In general, all schemes oscillated in at least one situation, however the results obtained with the schemes that select
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a greater number of nodes, T6/3- and T2L-scheme, showed more promising.
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(a) CS-RPIMp (b) ES-RPIMp (c) NS-RPIMp

FEM T3-/T4-scheme T6/3-scheme T2L-scheme

Figure 6. L-shaped panel - Convergence

3.2 Three-point bending test

The beam illustrated in Fig. 7 has a thickness equal to 50 mm and it is subjected to a vertical force F = 200 N.
For the numerical simulation, the following material parameters experimentally obtained by Petersson [16] were
used: Young’s modulus E = 30000 MPa and Poisson’s ratio ν = 0.2.

F

2000

25
0

20

10
0

Figure 7. L-shaped panel (measures in mm)

The meshfree shape functions were constructed with the radial point interpolation method with polynomials
reproduction, using the exponential radial function with c = 0.002 and 3 polynomials terms. The discretizations
used in each S-PIM model are shown in Figs. 8 to 10.

(a) Discretization 1 (b) Discretization 2

(c) Discretization 3 (d) Discretization 4

Figure 8. FEM and CS-RPIMp discretizations

The vertical displacements of the point of load application obtained in the analysis of the L-shaped panel are
shown in Fig. 11.

In the three-point bending test, the CS-RPIMp and ES-RPIMp methods using the scheme that selects the
smallest number of support nodes, in the case T4 and T3, respectively, showed results that hardly changed with the
mesh. For these two methods, the other two schemes employed also showed a tendency of convergence superior to
the FEM. The CS-RPIMp, when using the T3- and T2L-scheme, presented a small oscillation due to the refinement
of the discretization, with the T6/3-scheme, the vertical displacement increased as the discretization increased. ES-
RPIMp and NS-RPIMp, regardless of the scheme used, presented results without oscillations, showing a behaviour

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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(a) Discretization 1 (b) Discretization 2

(c) Discretization 3 (d) Discretization 4

Figure 9. ES-RPIMp discretizations

(a) Discretization 1 (b) Discretization 2

(c) Discretization 3 (d) Discretization 4

Figure 10. NS-RPIMp discretizations

that tends to a value as the discretization refinement occurs. Among of the three methods employed, only the NS-
RPIMp approaches by higher vertical displacement values, taking the FEM results as reference. The T2L-scheme
showed the best results for this method. The T6/3-scheme was the only one that did not present oscillations in the
results for all methods in this simulation.

1 2 3 4
−0.110

−0.090

−0.070

−0.050

Discretization

V
er

tic
al

di
sp

la
ce

m
en

t[
m

m
]

1 2 3 4

Discretization

1 2 3 4

Discretization

(a) CS-RPIMp (b) ES-RPIMp (c) NS-RPIMp

FEM T3-/T4-scheme T6/3-scheme T2L-scheme

Figure 11. L-shaped panel - Convergence

4 Conclusions

An investigation to understand the behaviour of CS-, ES- and NS-RPIMp methods when applied to linear
static structural problems was presented. To perform, two numerical problems were analyzed from four different
discretizations and different nodal selection strategies, in this case T3-, T4-, T6/3- and T2L-scheme. As can be
seen, the results obtained in the simulations showed that the NS-RPIMp is more flexible than the others S-PIM
models and the FEM. The convergence rate and accuracy of the CS- and ES-RPIMp methods is higher or in the
same order as the FEM. In the most refined discretizations, the T3-, T4- and T6/3-scheme present very similar
results in all situations. In general, when comparing the methods, the ES-RPIMp proved to be more attractive than
the other two meshfree methods, as it presented the results that less oscillate regardless of the scheme used in the
simulations. Regarding strategy, it was observed that T6/3-scheme as well as ES-RPIMp was the one that oscillated
the least. In particular, the combination that presented the results with the best behaviour was the ES-RPIMp with
T6/3-scheme.
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