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Abstract. Meshfree methods belonging to the class of Smoothed Point Interpolation Methods (S-PIM) have been
shown to provide certain advantages with respect to the standard finite element method (FEM), when dealing with
physically nonlinear problems. The present work extends the Cell-Based Smoothed Radial Point Interpolation
Method with polynomial reproduction (CS-RPIMp), originally proposed for linear problems, to the case of damage
models. The weakened-weak (W2) formulation and peculiar integration scheme which this method is based on have
been extended to nonlinear damage models. Some numerical examples of nonlinear problems with different kinds
of boundary conditions, performed using different strategies for support nodes selection based on the T-schemes
(T4-, T6/3- and T2L-schemes), are presented, aiming to point out the accuracy, convergence and efficiency of the
Cell-Based Smoothed Radial Point Interpolation Method with polynomial reproduction in comparison with the
standard finite element method.
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1 Introduction

Smoothed point interpolation methods (S-PIM) are a class of methods that were developed upon a weakened-
weak (W2) formulation. This formulation endows these methods with interesting characteristics that, in general,
make them more accurate than the standard FEM. Among them there are the so-called node-base smoothed point
interpolation method (NS-PIM), proposed by Wu et al. [1], edge-based smoothed point interpolation method (ES-
PIM), developed by Wu et al. [2], and cell-based smoothed point interpolation method (CS-PIM), presented by
Liu and Zhang [3] and Zhang and Liu [4]. S-PIM methods are considered robust, efficient and simple. Simplicity
can be characterized by the fact that these methods use discretized domains in triangular background cells, small
numbers of nodes in the support domains and low-order interpolation functions [5].

CS-PIM models, when compared to others S-PIM models, have the advantage of making a direct use of the
background cells as their smoothed domains without the need for further geometrical operations that are instead
needed to build node- and edge-based domains. When used with PIM shape functions it presents some issues, that
can be overcome using shape functions based on radial functions [6]. Many works based on CS-PIM models have
been applied to the study of linear static problems.

This paper aims to show the use of the CS-PIM combined with the nodal selection strategies for building the
support domain, T4-, T6/3- and T2L-scheme, in nonlinear damage models. For that, it was decided to investigate
the numerical simulation of two experimental test available in the literature. The simulations were performed using
the open-source software INSANE1.

1More informations on the project can be found at https://www.insane.dees.ufmg.br/; the development code is freely available
at the Git repository http://git.insane.dees.ufmg.br/insane/insane.git.
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2 Cell-based smoothed radial point interpolation method

The approximate displacement function u(x) for a point x is defined in the domain by

u(x) =

n∑
i=1

φi(x)ui, (1)

where n is a set of nodes, φi is the nodal shape function for the ith node and ui is the nodal displacement at the ith
node.

S-PIM methods generally use polynomial or radial basis function (RBF) in their shape functions. In the
present work, the radial point interpolation method with polynomials reproduction (RPIMp), presented by Liu and
Gu [7], that combines both, radial basis functions and polynomials in the basis will be used. The displacement
field is approximated at a point x, by

u(x) =

n∑
i=1

Ri(x)bi +

m∑
j=1

pj(x)aj = RT (x)b+ pT (x)a =
[
RT (x) pT (x)

]b
a

 , (2)

where n is a set of nodes in the neighborhood of x, m is the number of polynomial base functions, bi and aj
are coefficients associated to the RBFs and polynomials, respectively, Ri is the radial base function and pj the
monomials of the polynomial base.

The coefficients associated to the RBFs and polynomials functions, bi and aj , can be determined satisfying
eq. (2) at the n nodes within the support domain. Thus eq. (2) can be rewritten in matrix form by

u
0

 =

RQ Pm

Pm 0

b
a

 = G

b
a

 , (3)

where G is the combined moment matrix composed by

RQ =

 R1(r1) R2(r1) ... Rn(r1)
R1(r2) R2(r2) ... Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) ... Rn(rn)

, Pm =

 P1(x1) P2(x1) ... Pm(x1)
P1(x2) P2(x2) ... Pm(x2)

...
...

. . .
...

P1(xn) P2(xn) ... Pm(xn)

. (4)

Manipulating eq. (3) and replacing it in eq. (2), the approximation of displacement field can be rewritten as
follows

u(x) =
[
RT (x) pT (x)

]
G−1

u
0

 , (5)

where the shape functions is given by

φ(x) =
[
RT (x) pT (x)

]
G−1. (6)

RPIMp shape functions satisfy the Kronecker delta property, that is an important feature because it allows a
straightforward imposition of boundary conditions.

2.1 T-schemes for nodes selection

The same background mesh used to build the smoothing domains can also be used to select the nodes in the
support domain that will be used to build the shape functions.

Due to the ease of creation in addition to other important aspects, generally triangular type background
meshes are used to discretize the domain, thus allowing the use of the so-called T-schemes. This nodal selection
strategy is based on the triangular cell where the point of interest is located.

According to Liu and Zhang [5, 8], T-schemes have been found to be most practical, robust, efficient and
works well for the S-PIM models. Among the various existing schemes, the following will be used in this work:
T4-, T6/3- and T2L-scheme.
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2.2 Construction of the Smoothing Domains

The S-PIM models use so-called smoothed strain fields in their formulation. These smoothed strain fields
provide unique, important and attractive features to these models.

The construction of these strain fields is based on a set of smoothing domains, where the strain is assumed to
be uniform. These smoothing domains are a tessellation of the problem domain into subdomains that must cover
it without overlaps or gaps [3]. The way these smoothing domains will be formed and their quantity, is related to
the specific S-PIM model, and can be based on a node, edge or face (cell) of the background mesh.

The cell-based strategy has its smoothing domains based on faces (cells). In this way, since the problem
domain is already discretized by a triangular background mesh, each triangle of this mesh becomes a smoothing
domain, thus avoiding further geometrical operations that are instead needed to generate node- and edge-based
smoothing domains. The points of interest or integration points are located on the edges of each triangle, as
pointed out in Fig. 1.

Node
Cell centroid
Integration point

Internal
domain

Boundary
domain

Figure 1. Cell-base smoothing domain

3 Constitutive model

The behaviour of quasi-brittle materials during a loading-unloading process can be described with elastic-
degrading models, where the material elastic properties progressively degrades as the strains exceed certain thresh-
old values.

A feature of these models is the existence of a total relationship between stresses and strains, which can be
expressed by

σ = ÊSε, ε = (ÊS)−1σ, (7)

where σ is the stress tensor, ε is the strain tensor and ÊS is the secant constitutive operator. Disregarding the micro
cracks closure-reopening effects, the secant operator remains constant within an unloading-reloading process.

3.1 Scalar damage

Scalar damage models are the most simple ones among the different elastic-degrading models. Their secant
constitutive operator is expresses as [9–11]

ÊS(D, Ê0) = (1−D)Ê0, (8)

where D is a scalar damage variable, assumed to vary from 0 (undamaged material) to 1 (completely damaged
material), and Ê0 is the initial constitutive operator.

For a scalar damage model, a common choice for the loading function is represented by the following addititve
decomposition

f(ε, D) = εeq(ε)−K(D) 6 0, (9)

where εeq(ε) is an equivalent strain, and K(D) is a historical parameter that is representative of the maximum
level of strain reached during the loading process. The damage variable is usually prescribed as a function of the
equivalent strain; in this work the following exponential damage law is being adopted

D(εeq) = 1− K0

εeq
(1− α+ αe−β(εeq−K0)), (10)
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where K0 is a threshold value for the equivalent strain, α and β are parameters that define the maximum allowed
damage level and the damage evolution intensity, respectively. In this work, the Mazars scalar damage model
[12, 13] was applied, and the equivalent deformation is given by

εeq =

√√√√[
3∑
k=1

(< ε(k) >+)2

]
, (11)

where ε(k) is the kth eigenvalue of the strain tensor and < ε(k) >+= (ε(k) + |ε(k)|)/2 its positive part.

4 Numerical simulations

In this section, two numerical simulations are presented using the CS-RPIMp strategy in physically nonlinear
analyses. To compare the performance of this meshfree method, the results obtained with three nodal selection
strategies, T4-, T6/3- and T2L-schemes, are compared with the results obtained by FEM models using triangular
elements with three nodes, and also with results of experimental tests.

4.1 L-shaped panel

The L-shaped panel illustrated in Fig. 2a has a thickness equal to 100 mm and is subjected to a vertical force
F = 7000 N. The material parameters experimentally obtained by Winkler et al. [14] and adopted in the numerical
simulation are: Young’s modulus E = 25850 MPa, Poisson’s ratio ν = 0.18, tensile strength ft = 2.7 MPa,
compressive strength fc = 4.0 MPa, fracture energy Gf = 0.065 MPa and a characteristic length h = 28.0 mm.
The Mazars scalar damage model was adopted with the following parameters for the exponential damage law
(eq. (10)): α = 0.95, β = 1100 and K0 = 1.12× 10−4.

The Newton-Raphson method was applied with the displacement control method to solve the system of
nonlinear equations, for that a vertical displacement increment equal to 7.5× 10−4 mm was applied at the node of
load application, and a tolerance for the convergence in displacement of 1× 10−4.

F

250

25
0

500

50
0

(a) Geometry (measures in mm) (b) Discretization - FEM and CS-RPIMp

Figure 2. L-shaped panel

The meshfree shape functions were constructed with the radial point interpolation method with polynomials
reproduction, using the exponential radial function with c = 0.002 and 3 polynomial terms. The tangent approxi-
mation of the constitutive operator was considered to perform these simulations.

The equilibrium paths were obtained from the vertical displacement of the point where the load is applied.
Experimental results were reproduced from Winkler et al. [14].

The results shown in Fig. 3 point out that CS-RPIMp with T4-scheme was the configuration that best de-
scribed the global response of the structure. For the softening branch, the T4 and T6/3 strategies were able to
describe the behaviour well. Finally, T4- and T6/3-scheme again showed greater precision in the limit load value.
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Figure 3. L-shaped panel - Equilibrium paths

4.2 Three-point bending test

The beam illustrated in Fig. 4a has a thickness equal to 50 mm and it is subjected to a vertical force F =
800 N. For the numerical simulation, the following material parameters experimentally obtained by Petersson
[15] were used: Young’s modulus E = 30000 MPa, Poisson’s ratio ν = 0.2, tensile strength ft = 3.33 MPa,
compressive strength fc = 33.3 MPa and fracture energy Gf = 0.124 MPa. The Mazars scalar damage model
was adopted with the following parameters for the exponential damage law (eq. (10)): α = 0.95, β = 1100 and
K0 = 1.10× 10−4.

The solution of the system of nonlinear equations was performed using the Newton-Raphson method with
the displacement control strategy, using the force application node as the control point, and vertical displacement
increment of −5.0× 10−3 mm. The tolerance considered for convergence was 1× 10−4.
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(a) Geometry (measures in mm)

(b) Discretization - FEM and CS-RPIMp

Figure 4. Three-point bending

The meshfree shape functions were constructed with the radial point interpolation method with polynomials
reproduction, using the exponential radial function with c = 0.002 and 3 polynomial terms. The tangent approxi-
mation of the constitutive operator was considered to perform the simulations.

The equilibrium path was described for the vertical displacement of the point where the load is applied.
Experimental results were reproduced from Petersson [15].

As can be seen in Fig. 5 the elastic branch was very well represented by all models, the softening branch
was best represented by CS-RPIMp with T6/3-scheme, this being the model that best reproduced the physical test.
A highlight of this simulation was the almost identical behaviour of the FEM and CS-RPIMp with T4-scheme,
different from what happened in the simulation presented in section 4.1. The T2L-scheme after the linear part of
the equilibrium path, it started to distance itself from the experimental test and for numerical reasons it stopped
before the end of the number of steps established in this analysis. Once again, T4- and T6/3-scheme showed good
values of limit load, in addition to good behaviour throughout the analysis.
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Figure 5. Three point bending - Equilibrium paths

5 Conclusions

In the present work it was presented the use of the cell-based smoothed point interpolation method in the
study of physically nonlinear problems. A comparison between three different nodal selection strategies for the
construction of the support domain were applied in the two numerical simulations, in addition to comparing the
results obtained through this meshfree method with the finite element method and the experimental test. In the
two simulations performed, the CS-RPIMp with T4- and T6/3-scheme obtained equilibrium paths similar to the
experimental test, however the T2L-scheme, which uses a much larger number of nodes in the support domain,
presented good results only in the elastic branch. It is also possible to observe that in both simulations, the addition
of nodes in the support domain made CS-RPIMp a little more rigid in the softening branch. In general, the main
aim of the work can be demonstrated, in addition to opening possibilities for further research on the topic.
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