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Abstract. In damage models, cracks are considered in a smeared way, without any geometric representation
of the region where the crack takes place, and the energy released is used in crack growth that is controlled by
the energy fracture parameter. Phase-field models consider a diffuse and smooth crack that belongs to a certain
volume region, where a function describes the crack density. In that region each point has a field variable that
quantifies the material degradation. The phase-field techniques allows to detect crack paths and its bifurcation
without having a pre-existent crack. The purpose of this work is to present some phase-field models implemented
in the INSANE (Interactive Structural ANalysis Environment system) software, an structural analysis open-source
software developed by at the Structural Engineering department (DEES) of the Federal University of Minas Gerais
(UFMG). This work opens a new research line inside the INSANE Project. Some preliminary results will be
presented.
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1 Introduction

Fracture is an important failure mechanism for engineering materials and it has been extensively studied to
prevent catastrophic collapse of engineering structures [1]. Griffith criterion is based on a pre-existing crack that
propagates when the energy release rate matches the fracture toughness [2]. This method, however, presents a
number of limitations, like the need for a pre-existing crack and the impossibility to describe curvilinear crack
paths [3]. Besides overcoming these limitations, phase-field models can detect cracks bifurcation and can describe
a sharp crack without the need for the geometrical representation. For that, the phase-field model incorporates
a continuous field variable (φ) that represents a smooth transition between the completely broken and unbroken
material. Another variable of the phase-field models is the length scale parameter (l0) that relates the diffusive
approximation of the sharp crack. When the parameter l0 becomes larger, the degraded region also becomes larger.

This work presents some phase-field techniques that has been implemented in INSANE1 (INteractive Struc-
tural ANalysis Environment System), an open-source software developed by the Structural Engineering Department
at the Federal University of Minas Gerais.

A lot of phase-field models can be found in the literature. Bourdin et al. [5], for example, proposed an
isotropic model to represent crack propagation. Anisotropic models, that separate traction and compression re-
gions, can also be cited as, for example, the models of Lancioni and Royer-Carfagni [6] and Amor et al. [7]. It
should be noted that, when dealing with phase-field models, the therms isotropic and anisotropic is not related to
material proprieties, but to the separation of energy regions. In this present work, just the isotropic model will be
presented once the implementation of anisotropic model is already in course.

2 Phase-field models

Phase-field models has some functions that are keys of its operation. They are the crack surface density
function (γ(φ,∇φ)) and the energetic degradation function (g(φ)). The function γ is responsible to give the

1More informations on the project can be found at https://www.insane.dees.ufmg.br/, the development code is freely available
at the Git repository http://git.insane.dees.ufmg.br/insane/insane.git.
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smeared characteristic to the crack. Wu [1] had presented a generic way to describe it:

γ(φ,∇φ) =
1

C0

[
1

l0
α(φ) + l0|∇φ|2

]
, (1)

where α(φ), called geometrical crack function, determines how phase-field will be distributed and it has to satisfy
α(0) = 0 and α(1) = 1. The parameter C0 is dependent on alpha by the integral: C0 = 4

∫ 1

0
α1/2dφ. The

function g degradates the energy. In this way, beyond deformation (ε), it is assumed that the strain energy function
(ψ) depends on g, by the following form

ψ(ε) = g(φ)ψ+
0 (ε) + ψ−0 (ε), (2)

where ψ+
0 represents the part of the energy that comes from tension, and ψ−0 from compression. It is important to

emphasize that only anisotropic models makes this differentiation. In isotropic models the function g multiplies
the whole elastic energy function.

There are some criteria that g(φ) must satisfy:
• g(0) = 1: there is no degradation in intact material;
• g(1) = 0: the energy is completely degraded in fully broken material;

• g′(φ) =
dg

dφ
< 0: the function g(φ) has to be monotonically decreasing;

• g′(1) = 0: there isn’t sudden variation in the interface where the material in fully broken.
With all this in mind, a domain Ω with a damaged part B ⊂ Ω is considered. The boundary of the solid and

its damaged surface are, respectively, ∂Ω and ∂B. Therefore, the total energy functional becomes:

Et =

∫
Ω

ψ(ε(u), φ)dV +

∫
B
Gcγ(φ,∇φ)dV −

∫
Ω

b · udV −
∫
∂Ω

t · udA, (3)

where Gc is the fracture energy, u is the displacement vector, and b and t are, respectively, the body and surface
forces.

With all of this shown above it is possible to demonstrate that the governing equations of a phase-field model
in the weak form are:

{∫
Ω
σ : δεdV = δPext∫
B
[
g′(φ)Ȳ δφ+Gcδγ

]
dV ≥ 0

, with δγ =
1

C0

[
1

l0
α′(φ)δφ+ 2l0∇φ · ∇δφ

]
, (4)

where the first equation of the system 4 is the standard weak form of classical elasticity while the second one
comes from minimization of functional 3.

3 Finite element discretization

In the Finite Element Method, the displacement field, the strain field and the phase-field are interpolated from
displacement (d) and phase-field (a) nodal values:

u(x) = Nud, ε(x) = Bud, φ(x) = Nφa, ∇φ(x) = Bφa, (5)

where the matricesN andB are written using the approximation functions:

Nu =

Nu
i 0

0 Nu
i

 , Bu
i =


Nu
i,x 0

0 Nu
i,y

Nu
i,y Nu

i,x

 , Nφ
i =

{
Nφ
i

}
, Bφ

i =

Nφ
i,x

Nφ
i,y

 . (6)
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From definitions 5 and 6, the system of equations 4 becomes:


∫

Ω
(Bu)TσdV = fext∫
B g
′Ȳ (Nφ)T dV +

∫
B
Gc
C0

(
1

l0
α′(Nφ)T + 2l0(Bφ)T∇φ

)
dV ≥ 0

. (7)

With the residual values described in 8 and stiffness matrix in 9:

ru = fext −
∫

Ω

(Bu)TσdV = 0, rφ = −
∫
B

[
(Nφ)T

(
g′Ȳ +

1

C0l0
α′Gc

)
+

2l0
C0

Gc(B
φ)T∇φ

]
dV ≤ 0.

(8)

Kelement =

Kuu Kuφ

Kφu Kφφ

 , Kuu =

∫
Ω

(Bu)T
∂σ

∂ε
BudV, Kuφ =

∫
Ω

(Bu)T
∂σ

∂φ
NφdV,

(9a)

Kφu =

∫
B

(Nφ)T g′
∂Ȳ

∂ε
BudV, Kφφ =

∫
B

(Nφ)T
(
g′′Ȳ +

1

C0l0
α′′Gc

)
NφdV +

∫
B

2l0
C0

Gc(B
φ)TBφdV.

(9b)

4 Computational implementation

There are two approaches to the solution of the system of equations 7: monolithic and staggered solvers.
Monolithic solver tries to solve both equation in the same iteration. Since the energy functional is not convex with
respect to displacements and phase-field variables, the monolithic solver converges only in specific situations (Wu
et al. [8]). Staggered solver solves the displacement and the phase-field one at a time resulting in a more robust
process, and are capable to overcome some of the issues of monolithic solver. Every implementation discussed
forward was done to solve plane problems and in order to make the least possible intervention in the INSANE
code.

4.1 Monolithic solver

To implement the monolithic solver in INSANE system the matrices B and C (constitutive matrix) were
written to addapt the phase-field theory in already existing environment. With these implementations the final
stiffness matrix mounted has the same therms as the one described in equation 9. In this way, it gets:

Cmon
tangent =



[
∂σ

∂ε

]
3×3

[
∂σ

∂φ

]
3×1

[0]3×2[
g′
∂Ȳ

∂ε

]
1×3

[
g′′Ȳ +

1

C0l0
α′′Gc

]
1×1

[0]1×2

[0]2×3 [0]2×1 2
l0
C0
Gc [I]2×2

 , Bmon
i =



Nu
i,x 0 0

0 Nu
i,y 0

Nu
i,y Nu

i,x 0

0 0 Nφ
i

0 0 Nφ
i,x

0 0 Nφ
i,y


.

(10)

The dual internal variable vector (σ) was already needed implement as shown in equation 11:

σ =

[
σx σy τxy g′Ȳ +

Gc
C0l0

α′ 2
Gcl0
C0

φ,x 2
Gcl0
C0

φ,y

]T
. (11)

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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4.2 Staggered solver

The staggered solver solves equations 8 one at a time as a decoupled problem. For that, it is just used the
stiffness matrices Kuu and Kφφ. In this way, to solve the problem for displacements and for phase-field, the
matrices 12a and 12b were implemented, respectively, in INSANE.

Cstg,u
tangent =

∂σ

∂ε
, Bstg,u

i =


Nu
i,x 0

0 Nu
i,y

Nu
i,y Nu

i,x

 , (12a)

Cstg,φ
tangent =


g′′Ȳ +

1

C0l0
α′′Gc 0 0

0 2
l0
C0
Gc 0

0 0
l0
C0
Gc

 , Bstg,φ
i =


Nφ
i

Nφ
i,x

Nφ
i,y

 . (12b)

5 Obtained Results

As the present work is still ongoing, only the isotropic constitutive model has been implemented hence, all
the following results were obtained with that model. All presented results were obtained using the staggered solver,
once the monolithic had presented convergence issues in the softening branch of the equilibrium path. For all the
examples, the functions g(φ) = (1 − φ)2 and α(φ) = φ2 were considered. Besides the structural behaviour, also
the material behaviour has been investigated for both the examples, by doing a uniaxial traction test; the maximum
value of traction (ft) was compared to a theoretical value given by equation 13 [8].

ft =
3

16

√
3E0Gc
l0

(13)

5.1 Shear Test

The first example consists in the shear test depicted in figure 1, modelled using a mesh of 100 × 100 square
elements, imposing a constant horizontal displacement at the nodes on the top edge. The following material
parameters were adopted: E = 210 kN/mm2, ν = 0.2, Gc = 2.7× 10−3 kN/mm, l0 = 0.03 mm. In figure 2 the
load-displacement curves for the shear test and for the uniaxial test of the material are shown.

The simulated value of ft was 1.381 kN/mm2, while value of equation 13 was 1.412 kN/mm2, resulting in
a difference of approximately 2.2%.

5.2 Asymmetric Tension Test

The second example is the asymmetric traction shown in figure 3, modelled using a triangular mesh refined
in the region of the crack. A uniform vertical displacement was imposed at the nodes on the top edge, and the
following material parameters were adopted: E = 1 kN/mm2, ν = 0.3, Gc = 1.0 × 10−3 kN/mm, l0 =
0.0066 mm. The load-displacement curves are shown in figure 4.

The simulated value of ft was 0.126 kN/mm2, while value of equation 13 was 0.119 kN/mm2, resulting in
a difference of approximately 5.6%.

6 Conclusions

The present work intends to implement phase-field models on INSANE. The isotropic constitutive model
were already implemented with the monolithic and staggered solver. It was very clear that INSANE is a very
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Figure 1. Shear test. All dimensions are in millimetres. (a) Problem Setting. The nodes in the bottom edge are
fixed, and the nodes in the other three edges are fixed in the vertical direction. (b) Numerical results for phase-field
(φ).
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Figure 2. Load-displacement curves. (a) Top edge structural behaviour (b) Material behaviour.
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Figure 3. Tension test. All dimensions are in millimetres. (a) Problem Setting. The nodes in the bottom edge are
fixed. (b) Numerical results for phase-field).

robust software and there is a great potential to implement all kinds of models due of its generalizations in code.
As it was already mentioned by Wu et al. [8], the monolithic solver presents issues in convergence, and it doesn’t
conduces to good results. In both examples tested, it stops converges when the load factor starts to decrease. The
obtained crack patters are similar to those described in the literature.
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Figure 4. Load-displacement curves. (a) Top edge structural behaviour (b) Material behaviour.
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