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Abstract. Numerous materials, although they appear macroscopically homogeneous, usually present a heteroge-
neous microstructure that directly influences the structural behavior. The phenomenological approach followed by
the classical continuum mechanics does not individually accounts for this influence, which can be significant, for
example, in cases where the structure or the specimen under analysis is small compared to its microstructure or
when the material media has a complex microstructure. Within the framework of continuum mechanics, so-called
generalized continuum theories are particularly suited to deal with the above issues incorporating the microstruc-
tural behavior on the formulation. The micromorphic theory is included in this general class of generalized con-
tinua and, more specifically, in the group that incorporates additional degrees of freedom to the material particles.
Another aspect of generalized continua is its ability to address the issue of localization in quasi-brittle materials
modeled as elastic-degrading media as a result of its non-local character. In order to allow the representation of
quasi-brittle media with the micromorphic continuum theory, this work presents a formulation for scalar-isotropic
damage models for a micromorphic continuum in the constitutive models framework of the INSANE system, ini-
tially conceived for classical media and later expanded for the micropolar continuum. This implementation is based
on the tensorial format of a unified constitutive models formulation and homogenization techniques to obtain the
micromorphic constitutive relations.
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1 Introduction

The modeling of damage and fracture in structures is and has always been an important topic in the field
of computational mechanics. As a consequence, there is a growing demand for reliable material models that are
capable of representing all the phenomena involved in material failure. Concerning quasi-brittle materials, a proper
characterization of their behavior is of great importance taking into account the large number of materials that falls
into this category, e.g., concrete, rocks, coarse-grained ceramics, and most fiber-reinforced materials.

The macroscopic behavior of quasi-brittle materials is mainly due to its characteristics at the micro scales and
to defects that may exist at such scales, which are closely related to the heterogeneity at the microscale. Figure
1 illustrates the heterogeneous microscopic structure of concrete, wherein the features in the microscale can be
identified.

Figure 1. Low-magnification image showing the microcracks on the microstructure of concrete [1]
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Therefore, the degradation of a quasi-brittle material is a complex phenomenon strongly correlated to the
heterogeneous character of its microstructure. Hence, a detailed modeling of each individual process involved in
failure proves to be complicated and often not necessary. For this reason, the discipline of Continuum Damage
Models (CDM) emerged, accounting for degrading effects in an average sense by incorporating damage variables
into a standard continuum mechanics description.

In spite of the advantages, finite element computations based on continuum damage models may suffer from a
number of issues, e.g., strong mesh dependence. These problems emerge from the softening behavior of such mod-
els, which is a characteristic of quasi-brittle materials. This softening phase is characterized by a reduction in the
load-carrying capacity of the material when a certain deformation threshold is reached, leading to the concentration
of the degrading phenomena in a certain part of the body, process that called strain localization.

To overcome these shortcomings several methodologies were developed. Among the most efficient ap-
proaches are those that introduce at the formulation level an internal material length based on the non-local
character of plasticity and damage. A valid alternative is represented by the micromorphic continuum [2–4], a
generalized continuum theory in which the internal length is related to an additional field that enriches the contin-
uum kinematics with effects connected to the microstructure of the material.

This paper presents an attempt of extension to the micromorphic continuum of a general elastic-degrading
unified formulation focusing on isotropic scalar damage models. The implementations were held in the software
INSANE (INteractive Structural ANalysis Environment) and are based on the tensorial format of a unified consti-
tutive models formulation.

2 Generalized Continuum Mechanics

In the study of material behavior based on the classical continuum mechanics every point in the material is
occupied by a small element of the solid called material particle. These particles can be idealized as mathematical
points as its dimensions are small compared to all characteristics lengths, but are nevertheless large compared to
atomic dimensions [5]. In this context, the medium kinematics is described by the translational degrees of freedom
of the material particles and by the consequent measures of deformation.

When dealing with composite inhomogeneous materials in the classical continuum, the constitutive equations
are developed using the concept of material particle associated to the idea of a representative volume element (RVE)
[6–8]. As define by Nemat-Nasser and Hori [9], the RVE for a material point of a continuum mass is a material
volume which is statistically representative of the infinitesimal material neighborhood of that material point.

In the analysis of usual structures in the engineering field the hypotheses of the classical continuum are suffi-
cient. However, in situations wherein the RVE concept does not represent satisfactorily all the phenomena related
to the influence of the substructure or the structural dimensions are small comparatively to the microstructure,
theories that incorporate information on the material substructure are necessary.

In this context, generalized continuum mechanics were developed. The generalization of standard continuum
mechanics of Cauchy begins in Voigt [10] and Cosserat and Cosserat [11] through the expansion of its basic
working hypotheses. These generalizations involve higher order gradients of the displacement fields (higher grade
continua) or/and additional degrees of freedom (higher order continua) [12–15]. Higher grade continua are related
to the order of the terms of the Taylor series expansion that are considered in the non-linear deformation mapping.
On the order hand, higher order continua are characterized by additional degrees of freedom per material point.
Embedded in each material point is assumed to be a microcontinuum, whose kinematics defines these additional
degrees of freedom [2, 13, 15]. The micromorphic theory falls into the last category.

Nevertheless, the micromorphic continuum presents two main drawbacks: the definition of the additional
constitutive equations and the determination of the high number of constitutive parameters. For the case of a linear
isotropic micromorphic material there are eighteen elastic parameters in contrast to the two Lamé parameters of
a classical isotropic continuum 1. To overcome these limitations, this work is based in the multiscale formulation
proposed in Silva [16] in order to obtain the macroscopic micromorphic constitutive relations using parameters
defined for the classical theory.

2.1 Micromorphic Continuum

As aforementioned, in the micromorphic continuum, additional degrees of freedom are considered at each
material point or, as defined in Eringen [17], “a micromorphic continuum is a continuous collection of deformable

1The number of elastic parameters remains the same even for simplified models (e.g., plane or reticulated models) as, to the authors’
knowledge, the micromorphic theory was not formulated for these particular cases. The constitutive relations adopted here were obtained
applying the simplifying hypotheses of each model to the three-dimensional relations.
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point particles”. For brevity, the formulation of such theory will not be detailed in this paper and the reader may
refer to Eringen [17] and Silva [16]. As this paper is related to constitutive modeling and elastic degrading models,
the constitutive relations for micromorphic media will be briefly addressed in the following paragraphs.

Based on the set of strain tensors proposed in Eringen and Şuhubi [3] and Şuhubi and Eringen [4], in a linear
approximation and disregarding temperature variations, the internal energy ψ0 is approximated by

ψ0 =
1

2
Aklmnεklεmn +

1

2
Bklmneklemn +

1

2
Cklmnpqγklmγnpq+

+ Eklmnεklemn + Fklmnpεklγmnp +Gklmnpeklγmnp

(1)

where Aklmn, Bklmn, Cklmnpq , Eklmn, Fklmnp and Gklmnp are the constitutive moduli; and εkl, ekl, and γklm
are the linear strain tensors.

From eq. (1) and applying symmetry regulations, the linear constitutive equations of an isotropic micromor-
phic solid can be obtained

tkl = Aklmnεmn + Eklmnemn, skl = Emnklεmn +Bklmnemn, and mklm = Clmknpqγnpq (2a,b,c)

where tkl is the stress tensor, skl is a symmetric stress tensor named micro-stress average [3], and mklm is the
stress moments tensor or, as defined in Eringen and Şuhubi [3], the first stress moments.

2.2 Homogenization of a Classical Continuum towards a Micromorphic Continuum

The analytical and discrete formulations of the micromorphic theory are well established in the literature,
however, the identification of the corresponding constitutive laws and the determination of the high number of
constitutive parameters limit its practical application. As an alternative to circumvent these limitations, the micro-
morphic homogenization strategy proposed by Silva [16] is used here, which consists in a multiscale formulation
for the construction of macroscopic micromorphic constitutive relations in terms of homogenized microscopic
quantities obtained from the solution of boundary value problems at the microscale according to the classical con-
tinuum theory. This strategy begins with models of the classical continuum on the microscale, without making
any constitutive assumptions on the macroscale. Consequently, the necessary material parameters are those of the
classical theory. This strategy is based on the micromorphic homogenization of [18] and is illustrated in Fig. 2.

Through this strategy, the initial macroscopic micromorphic constitutive relations are obtained only for the
first step of the first iteration by subjecting the material particles to Cauchy stress states resulting from elementary
states of strain, which consist of the successive application of component by component of macroscopic micro-
morphic strain with unit value, while the others components are kept as zero. From the Cauchy stress states, the
components of macroscopic micromorphic stress are determined, which, as a result of elementary states of strain,
consist of the terms of macroscopic micromorphic constitutive relations. For the subsequent iterations and steps,
the initial constitutive relations are degraded through the investigation of the degraded state of the material based
on the damage models implemented.

3 Elastic Degradation for Micromorphic Media

The implementation of the isotropic damage models for a micromorphic continuum here presented was based
on the unified framework for constitutive modeling presented in Penna [19]. A particularity of this system is the
use of a tensorial format instead of a vectorial-matricial one, which allows the format being independent from the
analysis model and from the numerical method. Hence, the generality and the possibility of expansion of the code
is greatly increased.

In a geometrically linear context, an elastic-degrading medium is characterized by total stress-strain relations

σij = Dijklεkl, and εij = D−1
ijklσkl (3a,b)

where Dijkl and D−1
ijkl are the components of the fourth-order stiffness and compliance tensors. The equations

presented correspond to the assumption of an unloading-reloading process where the stiffness remains equal to
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Figure 2. Micromorphic homogenization strategy

the current secant one, i.e., a full unload leads to no permanent strains. This formulation, as initially implemented
in the INSANE system, refers to the classical continuum theory, hence, the tensors σij and εij are the stress and
strain tensors of a classical continuum. The unified formulation can be presented in two different representations:
a stress-based one and a strain-based one. 2

3.1 Isotropic Damage Models in the Unified Framework

This unified theory here employed can encompass many of the continuum damage models proposed in the
recent literature. In this section, standard isotropic damage model (as defined by de Borst and Gutiérrez [22]) will
be shortly presented in the context of the unified framework for the classical continuum theory.

For the case of isotropic damage evolution, the total stress-strain relation is defined as

σij = (1−D)D0
ijklεkl (4)

where D is the scalar damage variable, D0
ijkl is the initial stiffness and the tensors σij and εkl are the stress and

strain tensors of a classical continuum. The loading function can be written as

F = f(A )− h(K) (5)

in which f(A ) is a function specified for each model that can be written in terms of stress/strain measures,
thermodynamic forces or damage. The function h(K) is a history variable which has the same nature as f(A ).
Adopting the strain-based formulation, f(A ) can be defined as an equivalent strain εeq (i.e., f(A ) = εeq) and
h(K) = K(D), where K(D) is the history variable related to the equivalent strain written as a function of the
damage.

2For the theoretical basis for a unified formulation for constitutive models the reader may refer to a number of authors (see, e.g., de Borst
[20], Carol et al. [21], de Borst and Gutiérrez [22], Armero and Oller [23, 24], Carol et al. [25, 26]). For the implementation in the INSANE
system, see Penna [19].
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The classical damage models of Mazars-Lemaitre [27], Simo-Ju [28], Marigo [29, 30], and Mazars [22, 31]
are defined by the following equivalent strain measures:

εeq =



√
εijεij (Mazars-Lemaitre)√
2ψ0 (Simo-Ju)√
2ψ0/E (Marigo)√[∑3

k=1(< ε(i) >+)2
]

(Mazars)

(6)

in which 2ψ0 = D0
ijklεijεkl is the internal energy, E is the initial Young’s modulus, ε(i) is the i-th eigenvalue of

the strain tensor and < ε(i) >+= (ε(i) + |ε(i)|)/2 its positive part.
When dealing with the micromorphic theory, there are four constitutive moduli, which causes a problem of

consistency (or compatibility) with a framework firstly implemented for a classical theory. In order to address
this problem between the formulation for the micromorphic continuum and the existing analogous formulation for
classical media previously discussed, a tensorial compact formulation was proposed based on Gori et al. [32].

Until now, the following damage models were elaborated in the context of micromorphic theory and imple-
mented in the INSANE system similarly to Gori [33]:

Γeq =


√
εijεij + eijeij + γijkγijk (Mazars-Lemaitre)√
2ψ0 (Simo-Ju)

(7)

where Γeq is the generalized equivalent strain and the internal energy ψ0 of an isotropic media defined as

ψ0 =
1

2
A0

klmnεklεmn +
1

2
B0

klmneklemn +
1

2
C0

klmnpqγklmγnpq + E0
klmnεklemn. (8)

4 Numerical simulation

In order to illustrate the utilization of the constitutive models presented in the previous section, an example of
a uniaxial stress state is here presented. As can be seen in Fig. 3, a square panel in plane-stress state with unitary
thickness and constituted by one finite element is loaded in the x direction. This model is able to demonstrate both
models implemented as it yields similar results due to its simplicity.

Figure 3. Uniaxial stress state

In order to obtain the initial elastic tensor necessary for isotropic damage models, the homogenization tech-
nique (Subsection 2.2) was applied with a square microcontinuum of dimension 0.05m. The equivalent isotropic
homogeneous material is characterized by an elastic modulus E = 20000MPa and a Poisson’s modulus ν = 0.2.
The parameters for the constitutive models are: Mazars-Lemaitre isotropic damage model [27]: α = 0.999,
β = 15, κ0 = 0.0145, and exponential damage law [19]; Simo-Ju isotropic damage model [28]: α = 0.999,
β = 2000, κ0 = 0.000104, and exponential damage law [19].
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The loading process is driven by the displacement control method assuming an increment of 0.000005m for
the horizontal displacement of the loaded face in order to better describe the peak load behavior and a tolerance for
the convergence of 10−4 in displacement. The results for the analysis are presented in Fig. 4 wherein the relation
between the control displacement and the load factor is given.
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Figure 4. Load factor × horizontal displacement

5 Conclusions

This paper presented a first attempt to model quasi-brittle media by means of continuum damage models,
more specifically scalar-isotropic models, with use of the micromorphic continuum theory. Observing the prelimi-
nary results here presented, it is possible to assume that this formulation is viable as it yields consistent results. Ap-
plying the homogenization technique to obtain the initial elastic tensor made possible the reduction of the number
of elastic parameters necessary for the analysis (E and ν), solving one of the greatest disadvantages of this gener-
alized continuum theory, which requires 18 elastic parameters for a isotropic medium. Furthermore, the proposed
tensorial formulation made possible the implementation of models for generalized continua, more specifically the
micromorphic continuum, in a unified constitutive framework first conceived for a classical medium.
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[31] Mazars, J., 1984. Application de la mécanique de l’endommagement au comportement non lineaire et á la
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