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Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil

Abstract. All the materials are heterogeneous in some sufficiently small length scale and in
the case of quasi-brittle media it is exactly the inhomogeneous nature of the continuum that
accounts for many of the phenomena captured in structural level, especially the prominent non-
linear mechanical behavior. In that sense, this work proposes the adoption of the Generalized
Finite Element Method associated with the Global-Local methodology (GFEM-GL) to build a
different multiscale strategy able to model general strain softening materials, especially quasi-
brittle media and its main archetype, the concrete. In an incremental-iterative scheme, the
solution of an initial global boundary value problem (macroscale) generates boundary con-
ditions to local domains (mesoscale). Then the solution of the inhomogeneous local problems
numerically creates enrichment functions for the global domain and the constitutive response of
the non-linear material. Lastly, the enriched global problem is processed again. At the current
stage, the material morphology has been modeled using a stochastic-heuristic algorithm and
numerically treated by the Finite Element Method, one of the many possible options to handle
the local/meso problem. The work has been carried out within the INSANE system (INteractive
Structural Analysis Environment), a free software developed at the Federal University of Minas
Gerais-Brazil.

Keywords: Generalized Finite Element Method, Multiscale Analysis, Mesostructure, Softening
and Non Linear Analysis
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1 INTRODUCTION

Materials formed by dissimilar constituents distinguishable in a certain length scale, small
by definition, are called heterogeneous, non-homogeneous, microstructured or complex. Com-
mon examples are: generic composites, concrete, polycrystals, polymers, cellular solids, bio-
logical tissues, wood, soil, clay, foams, among others. Due to the nature of their fracture, some
of these materials, such as concrete and geomaterials, can be classified as quasi-brittle (Bohm,
2016; Fuina et al., 2010).

Quasi-brittle media are those which exhibit moderate hardening prior their ultimate tensile
strength is reached. After this peak, the increasing of strains happens in parallel to the de-
creasing of stresses (strain softening). This behavior, markedly non-linear, is directly related to
micromechanical aspects of the material, in which the heterogeneity is one of the predominant
causes (Karihaloo, 2010).

In general, the behavior of materials and structures is studied by using single-scale models,
representing the macroscopic level. In these models, phenomenological constitutive equations
are used to capture the behavior of the underlying (refined) scales. As an alternative to this
single (macroscopic) scale approach, multiscale modeling can be adopted to capture the relevant
physical phenomena of different observation levels. This approach does not eliminate the use
of phenomenological constitutive equations at lower scales, except when it is at the atomistic
level. Indeed, it can face – to some extent – certain uncertainties incorporated in many of the
single-scale constitutive models (Zienkiewicz et al., 2006).

In computational mechanics, the use of numerical methods is notoriously one of the main
tools in the study of materials and structures, being the Finite Element Method (FEM) the
most popular one. More recently, the Generalized Finite Element Method (GFEM) has been
developed in several scientific studies (Duarte et al., 2000; Duarte, 2001; Duarte and Babuška,
2005; Duarte and Kim, 2008; Gupta et al., 2015; Barros, 2002) to solve various solid mechanics
problems, especially those of fracture. In this method, the original approximation space of a
finite element is enriched by special functions, in order to capture specific phenomena.

Currently, the GFEM is used in problems of more than one scale of analysis (Kim et al.,
2009; Kim and Duarte, 2009; Kim et al., 2010, 2012; Kim and Duarte, 2015; Plews and Duarte,
2014, 2016; Alves, 2012) in which one seeks to investigate the behavior of local (refined) do-
mains that have singularities or some other peculiarity, as well as to study the global (coarse)
domains. In this context, the Generalized Finite Element Method with Global-Local Enrich-
ment (GFEM-GL) emerges, using enrichment functions derived from a hybrid composition of
the traditional Global-Local analysis (Noor, 1986; Ransom and N. F. Knight, 1989) and GFEM.

The study of materials with hierarchical structure may improve the knowledge on media
with specific special properties, used in several engineering applications, due to the understand-
ing of the individual behavior of its components and the interaction between them.

In that sense, this work proposes the adoption of the GFEM-GL to model quasi-brittle
(softening) media with the introduction of the material heterogeneity, and therefore, following
a multiple scale approach, more specifically one with two levels: one macroscopic or structural
scale and one mesoscopic scale – in which the morphology of the medium will be described. In
order to do so, the INSANE System (INteractive Structural ANalysis Environment), a free soft-
ware developed in the Department of Structural Engineering of the Federal University of Minas
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Gerais, written in Java language and available at http://www.insane.de.ufmg.br, is
employed. The system is composed by interactive-graphical applications of pre- and post-
processing that work together with a numerical core, which has implementations of standard
FEM, GFEM, GFEM-GL (linear case), Boundary Element Method, Meshless Methods, non-
linear analysis, as well as a wide range of constitutive models, structured in the Unified Envi-
ronment for Constitutive Models (Gori et al., 2017). We expect that the proposed methodology
in this paper could be used not only to expand the numerical core of INSANE, but could also
be able to model the softening behavior of some materials by applying a general multiscale
strategy to GFEM, enabling one to get the overall domain response and a more detailed internal
description of the material behavior. In the current stage of the work, the researchers present a
material morphology generator of particulate media implemented to describe the internal com-
position and geometry of the analysis domain. These aspects and results are crucial to future
achievements, as they consist in one of the most natural ways to handle the material heterogene-
ity and a important option to describe the mesoscopic problem, since their visual and physical
appeals are very prominent.

In the following, we have: in Section 2, the fundamentals of the Generalized Finite Element
Method and its association with the Global-Local methodology are presented. Then, in Section
3, the theoretical multiscale strategy proposed here is registered together with some operational
aspects. In Section 4, the current research stage is presented and the treatment of the morphol-
ogy of a typical particulate material is shown, which will take part in the future implementation
of the proposed nonlinear analysis. At the end, final considerations are presented in Section 5.

2 GENERALIZED FINITE ELEMENT METHOD
The Generalized Finite Element Method (GFEM) is a relatively new numerical method,

developed in the mid-1990s. It originally refers to the work of Babuška et al. (1994), named
as Special Finite Element Method, and Melenk and Babuška (1996), referenced as Partition of
Unity Method (PUM). These theories were developed in parallel to the formulation of some
meshless methods (more specifically, the hp-Cloud Method of Duarte and Oden (1996a,b) and
Duarte (1995). According to Barros (2002), its use under its current terminology have first ap-
peared in Melenk (1995). It is noteworthy that the extrinsic enrichment strategy of the GFEM is
similar to that one used by another numerical method, the Extended Finite Element Method
(XFEM). According to Fries and Belytschko (2010), the nomenclature distinction between
PUM, GFEM and XFEM has become very confusing, and in practice, they may be considered
identical or equivalent methods.

2.1 Formulation

Let Ω be a generic domain and Ωh its partition of unity by standard finite elements, in which
Ωh is the union of individual elements Ωe, with e = 1, . . . , ne; ne = total number of elements.
One could specify three main components of the GFEM approximation space:

1. Clouds or Patches (ωα): Union of finite elements which have node α as incidence. There-
fore, the set {ωα}nα=1, n = number of nodes, is a open cover such as Ωh =

⋃n
α=1 ωα.

2. Partition of Unity (PU) subjected to the cover {ωα}nα=1: Basically, a PU is a set of func-
tions which sum the unity in whichever point x belonging to the domain Ωh. In that sense,
the FEM shape functions,Nα, α = 1, . . . , n, compose a PU, i.e.,

∑n
α=1Nα(x) = 1 ∀ x ∈ Ωh.
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3. Approximation spaces χα of the clouds: To every cloud, there is a set χα, with dimension
D(α), of functions Lαi, so that χα = {Lαi, 1 ≤ i ≤ D(α), Lαi ∈ H1(ωα)}. To the base
functions Lαi we give the name enrichment functions. Lαi could be polynomial, singular,
discontinuous (among others), depending on the studied problem.

Thus, the GFEM approximation space (SGFEM ) is obtained by the hierarchical expansion
of the approximation space of the traditional Finite Element Method (SFEM ), using the space
corresponding to the enrichment (SENR), that is:

SGFEM = SFEM + SENR (1)

in which

SFEM =
∑
α∈I

Nα(x)aα (2)

SENR =
∑

α∈IENR

Nα(x)χα; with χα =

nENR∑
i

Lαi(x)bαi (3)

where I is the FEM nodal indexes set; IENR ⊂ I is the enriched nodes indexes set and nENR is
the total number of nodes; aα and bαi are nodal values of quantities approximated in each space.

The shape functions in SGFEM are computed by:

φαi(x) = Nα(x)Lαi(x) (4)

Finally, a generic scalar field u could be approximated by the GFEM following equation 5,
i.e.:

u(x) ≈ ũ(x) =
∑
α∈I

Nα(x)aα+
∑

α∈IENR

Nα(x)

nENR∑
i

Lαi(x)bαi; x ∈ Ωh and aα, bαi ∈ R (5)

2.2 Global-local methodology within GFEM partition of unity framework

A global-local (GL) method is a hybrid modeling or analysis technique, which consists of
using some computational strategies to solve complex problems. Its application was driven by
the demand of problems with physical and geometric nonlinearity (Noor, 1986).

The use of the global-local methodology with the GFEM consists of applying a zooming
technique in which the solution of an isolated local problem is employed to numerically gener-
ate the enrichment of the global approximation space within the partition of unity framework;
this association has been called Generalized Finite Element Method with Global-Local Enrich-
ment (GFEM-GL). Unlike classical FEM applications, local-global interaction is possible when
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GFEM is used; this gives us a good alternative to improve the global solution (Duarte and Kim,
2008).

The three fundamental steps in GFEM-GL are (figure 1):

1. Initially, a global problem is modeled with a coarse mesh.

2. Then, with the region of interest and the nodes to be enriched identified, one or more local
problem(s) is (are) solved, using the solution of the first step as boundary conditions.

3. Finally, in the third step, we enrich the global problem, which could be processed again.

Boundary
conditions
transfer

(2) Local
Problem
solution

(3)
Enriching

Global
Problem

*mesh refinement

Global Problem

Local Problem

(1) Initial Global Problem solution with coarse mesh

Cloud ωj Enriched node xj

Figure 1: Global-Local steps. Adapted from Alves (2012).

3 FUNDAMENTALS OF THE PROPOSED MULTISCALE STRATEGY

In the present article, the association of the Global-Local methodology whith GFEM is
proposed as a way of modeling problems in two levels, a coarse one (global) and a refined one
(local). The introduction of the heterogeneity in the local level automatically characterizes the
use of different scales of material observation, a macroscale (Global Problem) and a mesoscale
(Local Problem) that transmits to the global domain its effects through the construction of the
enrichment functions.

The proposed strategy could be classified, after de Borst et al. (2006), as follows: Dis-
cretization methodology: Coarse-to-refined; Scales representation: two scales (GFEM/GFEM
or GFEM/ other method); Continuity: both scales are continuous; Fine-scale boundary con-
ditions: Dirichlet/Neumman/Cauchy; Interscale communication: boundary conditions and en-
richments (primarily).
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3.1 Basic formulation

Boundary value problem to be modeled

Let Ω = ΩG ∩ ΓG be a domain in R3, whose boundary could be divided as ΓG = ΓuG ∪ ΓtG,
with ΓuG ∩ ΓtG = ∅. The following problem is introduced:

∇·σ = 0, in ΩG (6)
u = u, on ΓuG (7)
σ · n = t, on ΓtG (8)

in this way one could state:

Find ukG ∈ SG(ΩG) ⊂ H1(ΩG) | ∀ δukG ∈ SG(ΩG)

∫
ΩG

∇(δuG) : σ(uG) dV + η

∫
Γu
G

δuG · uG dS =

∫
ΩG

δuG · b dV +

∫
Γt
G

δuG · t̄ dS+

+η

∫
Γu
G

δuG · ū dS
(9)

where η is a penalty parameter, u and t are prescribed displacements and tractions on the
boundary, n is a vector normal to the surface ΓtG, b is the body forces vector and σ = D : ε,
with D denoting a constitutive tensor, function of the strain field.

Local problem

Let ukG ∈ SG(ΩG) be a GFEM approximation for problem of equation 9 in the incremental
step k. Prescribed boundary conditions uk and t

k should be imposed in (ΓL∩ΓuG) and (ΓL∩ΓtG),
respectively, using the boundary information. In (ΓL\ΓL ∩ ΓG), uG,0 is used as boundary
conditions, where ukG,0 := ukG,0(uk−1

G ) is a function of the previous step solution. Therefore, the
following problem can be addressed:

Find ukL ∈ SL(ΩL) ⊂ H1(ΩL) | ∀ δukL ∈ SL(ΩL)

∫
ΩL

∇
(
δukL

)
: σ
(
ukL
)
dV + η

∫
ΓL∩Γu

G

δukL · ukLdS + κ

∫
ΓL\(ΓL∩ΓG)

δukL · ukLdS =

=

∫
ΩL

δukL · bkdV +

∫
ΓL∩Γt

G

δukL · t̄kdS + η

∫
ΓL∩Γu

G

δukL · ūkdS+

+

∫
ΓL\(ΓL∩ΓG)

δukL ·
[
t
(
ukG,0

)
+ κukG,0

]
dS

(10)

where σ is a nonlinear constitutive relation,
[
t
(
ukG,0

)
+ κukG,0

]
represents stresses along the

interface between local and global domains, which depends upon the initial global solution
(ukG,0) and κ is a scalar chosen as to establish boundary conditions of Neumann (κ = 0),
Dirichlet (κ ∼= η) or Cauchy (0 < κ < η).
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Global problem

The local solution ukL is used as a enrichment function numerically generated. Hence, the
shape functions of GFEM are given as:

φkα = Nαu
k
L (11)

where the partition of unity is given by a relatively coarse FEM mesh in ΩG. In that sense the
following global problem is addressed:

Find ukG ∈ SG(ΩG) ⊂ H1(ΩG) | ∀ δukG ∈ SG(ΩG)

∫
ΩG

∇(δukG) : σ̂(ukG) dV + η

∫
ΓL∩Γu

G

δukG · ukG dS =

∫
ΩG

δukG · bkdV +

∫
ΓL∩Γt

G

δukG · t̄kdS+

+η

∫
ΓL∩Γu

G

δukG · ūkdS

(12)

where σ̂ depends upon a constitutive tensor which is function of the local solution
(
D := D(ukL)

)
and is constant in the step k.

3.2 Description of the analysis procedures

Two scale nonlinear analysis

The goal is to divide the incremental-iterative analysis into two levels: the local one, in
which the iterations of the nonlinear problem would be processed, and the global one in which
incremental (load or displacement) steps would be performed. Thus, the local and refined in-
stance is responsible for conducting the solution of the nonlinear spectrum of the analysis, while
on the global scale, a linear (secant) problem is faced. The figure 2 illustrates the procedure. In
this process, the boundary conditions of the local problems in a given step are obtained from the
global solution of the previous step. Similar approach can be found in Kim and Duarte (2015),
where it was used to tackle cohesive crack problems.

Multiscale strategy within GFEM framework

Next, the proposed analysis process is described, in accordance with the guidelines of the
GFEM-GL and its nonlinear version. The figure 3 illustrates the multiscale strategy proposed
in the paper.

Step 1 - Initial Global Problem: The macroscale domain is solved with the use of a coarse
mesh. In this process, the global displacements are obtained to provide boundary conditions
for the mesoscale. Other information such as damage evolution, stress, etc., may be necessary
for the correct nonlinear analysis of the local problem(s). This procedure is called hereinafter
downscaling (after Gitman et al. (2008)). In the context of GFEM-GL, this mechanism is based
on a weak coupling between the global and local domains by means of the Penalty
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Figure 2: Scheme of the proposed nonlinear analysis.
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Method (Lagrange multipliers could also be used). This coupling, and the consequent passing
of information, manifests itself in the transmission of boundary conditions from the Global
Problem to the Local Problem, through the integration of state (and dual) variables along the
interface between the domains.

Step 2 - Local problem(s): Once the solution of Step 1 is established, the solution of the lo-
cal problems, which define the mesoscale, begins. In this step, nonlinear analysis are performed
for each local problem, considering the heterogeneity of the medium and the consequent and in-
trinsic randomness of the properties in the domain. Once the solution of the first step is known,
the local problem solution is independent, and thus, several local domains can be defined, re-
specting the prerogatives of the GFEM (the cloud of an enriched node must be inside the local
domain). Thus, the parallelization of the solution process is one potential of GFEM-GL. We
hope to develop an implementation that allows the maximum generalization of the local domain,
that is, a code which enables the use of different (numerical) models for the Local Problem. Re-
garding the present work, we seek to represent the mesoscale using elastic degrading models in
parallel with morphological mesomechanical models that describe the geometry of the internal
configuration of the target material. In this step, the mechanism hereinafter called upscaling
is defined (after Gitman et al. (2008)), in which two main procedures can be highlighted: ho-
mogenization and enrichment. A homogenization procedure ensures that the heterogeneous
continuum, which describes the mesoscale, is translated into a homogeneous continuum, char-
acteristic of the macroscopic scale (Gitman et al., 2008). This mechanism is used to obtain the
global constitutive response of the material, in the regions in which the nonlinear mesoscopic
analysis is activated. By mapping the global integration points of the macroscale mesh into the
local domains, one could average the desired local variables (damage, stresses, strains etc.) in
the volume around the point and integrate the global fixed mesh. On the other hand, the enrich-
ment process is very straightforward, and consists of the extraction of displacements related to
global enriched nodes to build GFEM shape functions as discussed previously.

Step 3 - Enriched Global Problem or Global-Local Problem: Reaching convergence at
mesoscale, we proceed to Step 3. The current incremental step is over after the enrichment of
the macroscale nodes with the solution of the local problem(s) and linear (secant) equilibrium
of the Global Problem.

4 CURRENT STAGE OF THE RESEARCH

This work takes part in a much bigger project and the implementation of the above nonlin-
ear algorithm and multiscale strategy within GFEM-GL is on its way now. The team architects
the data structure to better fit the intended generalization and parallelization, and alternatives
for the nonlinear global-local analysis are being tested. For now, the management of the mor-
phological features of a particulate material have already been implemented and some examples
are presented here. We emphasize the importance of this results, as they comprise a relevant
part of the whole multiscale analysis proposed here. With a relatively good description of the
internal morphology of the material, its possible to get an enhanced resolution of its behavior.

4.1 Mesostructure generator

The particles generator is based on – but not restricted to – Wriggers and Moftah (2006)
and Wang et al. (1999). In this type of problem, a great effort is spent to deal with computational
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geometry aspects. To this matter, we sought not the perfect or most detailed way to describe
the internal geometry, but a feasible approach capable to represent the material heterogeneity
with less programming and computational exertion as possible. Besides that, in this type of
algorithm the order of complexity increases fast as the problem is solved, i.e., as the number of
particles grows, more tests need to be performed and more computational power is necessary.

The algorithm used (take-and-place algorithm) can be classified as a stochastic-heuristic
process, that is, particles with random shapes (and/or sizes) and positions are placed one-by-
one inside the analysis domain, and to each particle a number of checks is assigned in order
to verify whether it can be placed or not; no overlapping is allowed, all created particles must
be completely inside the domain and limiting distances (“particle-to-particle” and “particle-to-
boundary”) must be respected. These offsets are regulated by a distribution factor (DF ) which
enlarge the size of a particle before the execution of overlapping checkage.

Mesostructure plots

To illustrate the capacity of the matrix-heterogeneity mixture generator, it is presented dif-
ferent particle fraction (PF ) distributions. The sizes of the particles are based on concrete
aggregate specifications of ABNT NBR 7211 (2005) standard. Two types of particles were
used, spherical and polygonal/irregular particles. For both genders, the particle characteristic
dimension is taken as an average radius. So for the spherical ones the determination of a new
particle is direct; as for the polygonal specimen, the creation of a particle is based on an aver-
age circumference circumscribed to a regular polygon (with PS sides) to which some angular
and radial deviations are applied (∆α and ∆R). These variations represent how much a particle
vertex deviates from one another and from the average radius, respectively, and were introduced
to slightly roughen the particle.

The particles can be created using a continuous distribution or a specific grading curve ob-
tained in laboratory. In the examples shown here, a Füller’s curve was employed, for simplicity.
This continuous function has the following form (Wriggers and Moftah, 2006):

P (d) = 100×
(

d

dmax

)n
(13)

where P (d) is the percentage passing a sieve with size d; dmax is the maximum size of particles
and n is a constant (0.45 ≤ n ≤ 0.70, according to Wriggers and Moftah (2006) and Wang
et al. (1999)). The value of n = 0.50 was employed in this paper.

Next, we register some distribution examples inside a 10 cm × 20 cm section. Typical
particle fractions of concrete mixtures were selected – around 40% of coarse aggregates (Wang
et al., 1999). In figure 4(a), 4(b) and 4(c), there are samples containing spherical particles
and in figures 4(d), 4(e) and 4(f), polygonal inclusions are presented. All samples show a
grading range typical of coarse aggregates – within the segment 25.0 mm to 4.75 mm (ABNT
NBR 7211, 2005), except for figure 4(c) which presents particles all the way to fine sizes. The
placement ratio (relation between the desired particle fraction and the actual fraction of placed
particles) is around 99% in all examples.
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(a) PF = 40%;DF = 0.1; 25 −
19mm.

(b) PF = 50%;DF = 0.02; 25 −
4.75mm.

(c) PF = 50%;DF = 0.02; 25 −
0.030mm.

(d) PF = 30%;DF = 0.03;PS =
5; ∆R = 0.7; ∆α = 0.05; 25 −
6.3mm.

(e) PF = 40%;DF = 0.02;PS =
5; ∆R = 0.5; ∆α = 0.01; 25 −
4.75mm;.

(f) PF = 40%;DF = 0.02;PS =
6; ∆R = 0.5; ∆α = 0.01; 25 −
4.75mm;.

Figure 4: Morphology samples – spherical particles (4a), (4b) and (4c); polygonal particles (4d), (4e) and
(4f).
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4.2 Numerical example

For the numerical treatment of the geometric information from the particle distribution,
we present here the so-called FEM pixel approach (Bohm, 2016). In this strategy, it is used
a non-conform mesh (not aligned to the geometry) and the material information of a entire
finite element is chosen based on whether the element barycenter lies inside a particle or not
(assignment of particle/aggregate properties or matrix properties). The mesh should be fine
enough to capture the geometry variation of the particles.

Mesostructure numerical treatment

We propose here a simple linear problem, in plane stress, in which there are rigid inclusions
embedded in a elastic matrix (Eparticle � Ematrix). This choice of material properties was made
in order to increase the heterogeneity effects on the problem. Thereby, a direct mesostructural
simulation was carried out using the previous mentioned numerical model. Spherical particles
and a fixed grading segment were employed. Three different simulations of the heterogeneous
problem were performed (figures 7, 8 and 9), as well as the processing of a homogeneous
reference case (figure 6). In that sense, the following problem is presented (figure 5):

Material (Eparticle � Ematrix)

Ematrix = 30 GPa, νmatrix = 0.2

Eparticle = 10× Ematrix, νparticle = 0.2

Geometry (cm) and Boundary Conditions

h = 10.0, w = 20.0, t = 1.0

p = 1.0kN/cm2; left/bottom sides fixed

Particle distribution

PF = 20%;DF = 0.3; 19.0− 12.5mm

(a) Input parameters. (b) Model.

Figure 5: Numerical example.

Results from three different mesostructural simulations are shown next. Even though the
problem is kept the same, the stochasticity of the material heterogeneity manifests itself and
pervades the model behavior. Figure 6 presents the FEM mesh used in the examples and the
results of a homogeneous problem. Figures 7, 8 and 9 show three simulations and the re-
spective responses of each one. Since in the proposed test the predominant fields are in the
x–direction we chose to register the contour of these variables – images (b), (c) and (d) of each
figure. The maximum and minimal values of each field are highlighted in the picture caption
(dmaxx , εmaxxx , εminxx , σmaxxx , σminxx ). As it can be seen, the consideration of a heterogeneous contin-
uum to model the problem, highly affects the results. The expected homogeneous fields of a
pure traction test are not observed when a matrix-particle dispersion is considered. In figures 7,
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8 and 9, images (c) and (d), patterns of potential failure regions, which could govern the mate-
rial behavior – especially localizing continua (when considered), can be identified. In general,
strain and stress tend to concentrate in the inclusion boundary and in between particles.

(a) Mesh used in all simulations (average size = 0.2
cm). 3-noded triangular element.

(b) Displacement dx (cm). dmax
x = 6.66× 10−3.

(c) Strain εxx (cm/cm). εmax
xx = 3.33 × 10−4 (con-

stant).
(d) Stress σxx (kN/cm2). σmax

xx = 1.00 (constant).

Figure 6: Finite element mesh and reference problem (homogeneous case).

5 FINAL REMARKS

The theoretical basis of a different multiscale approach was presented. In this strategy, one
relies on the partition of unity framework within the GFEM and uses a specific type of enrich-
ment procedure (global-local enrichment) in order to capture localized features and behaviors
inside the analysis domain. Here, we have proposed the generalization of the GFEM-GL local
problem and the introduction of material morphological information within the mesolevel. With
that, we seek to enhance the material description and to improve the overall structural response.
Some results of the current stage were also shown. The mesostructure generator can deal with
different particle fractions and geometries and embodies the influence of heterogeneity random-
ness in the global response. Since every new simulation is a completely new problem, even if
the input parameters are the same, the computational model tends to emulate better the expected
behavior obtained in real experiments. The next stage of this research will deal with the imple-
mentation of other numerical treatments to solve the mesoscale (e.g., usage of conform meshes,
multiphase elements, among others) and the introduction of these processes in the proposed
nonlinear analysis.
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