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Abstract. This article discusses the object oriented project for a finite element method
software expansion, which aims to add the capability of performing a dynamic geomet-
rically non-linear analysis of structures. The article’s main focus is on the new classes
which will be implemented. A brief revision of the formulation to be implemented is made
and the incremental-iterative procedures used for solving the problem equations are also
discussed. Many UML (Unified Modeling Language) diagrams are shown, indicating how
the new classes will interact with the old ones and how do they provide all the expected
features.
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1 INTRODUCTION

The possibilities offered by technological resources in software development form a huge
field for research in the numerical and computational methods applied to engineering area.

Mastering these resources and applying them in the progressive improvement of models
demand a segmented computational environment, suitable to changes and whose com-
plexity may be increased in a gradual manner, as it is proposed by INSANE (Interactive
Structural Analysis Environment), a software developed in the Structural Engineering
Department of Universidade Federal de Minas Gerais which is available at the project
site: http://www.dees.ufmg.br/insane.

Basing in the implementation of finite element method structural models existent in the
software, it will be possible to increase complexities from already fixed concepts, avoiding
restarting the process in each improvement.

The INSANE’s computational environment is formed by three great applications: pre-
processor, processor and post-processor, all the three implemented in Java programming
language. The pre and post-processor are interactive graphical applications with pre and
post-processing tools for the various discrete models. The processor is the application
which represents the system’s numerical nucleus an is responsible for obtaining the results
for different structural analysis discrete models.

In this paper, it will be discussed an expansion to the numerical nucleus, which will add
the capability of performing a dynamic geometrically non-linear analysis of structures.

2 FEM DYNAMIC GEOMETRICALLY NON-LINEAR ANALYSIS

In a dynamic analysis, the finite element method (FEM) equilibrium equation to be
solved is:

M d̈ + C ḋ + K d = F (1)

in which M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F
is the force vector and d, ḋ and d̈ are, respectively, the displacement vector and its first
and second time derivatives.

The dynamic formulation used is the Newmark-β method [1], which can be summarized
by the following formulae:

K̃ ∆d(i) = ∆F̃ (i) (2)

∆ḋ(i) =
γ

β∆t
∆d(i) −R(i) (3)

∆d̈(i) =
1

β(∆t)2
∆d(i) −Q(i) (4)
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K̃ = K +
1

β(∆t)2
M +

γ

β∆t
C (5)

∆F̃ (i) = ∆F (i) + MQ(i) + CR(i) (6)

Q(i) =
1

β∆t
ḋ(i) +

1

2β
d̈(i) (7)

R(i) =
γ

β
ḋ(i) +

(
γ

2β
− 1

)
∆t(i)d̈(i) (8)

in which ∆t is a suitable time increment, γ and β are the Newmark parameters.
Assuming that γ = 1

2
and β = 1

4
, the constant acceleration method is obtained. In the

same way, if γ = 1
2

and β = 1
6
, the linear acceleration method is obtained.

For the geometrically non-linear analysis, the modified Newton-Raphson method is
adopted [2]. From this method, we have:

M t+∆td̈(i) + C t+∆tḋ(i) + tK δd(i) = t+∆tR− t+∆tF (i−1) (9)

∆d(i) = ∆d(i−1) + δd(i) (10)

where ∆d(i) is the incremental displacement vector in relation to the previous time step
in iteration i and δd(i) is the incremental displacement vector in relation to the iteration
i. The left superscript represent the time step and the right superscript represents the
iterative step.

The right-hand side of equation (9) is the unbalanced force vector and represents the
error obtained in the relative iteration. An iterative process must be done, until this error
is smaller than a pre-defined tolerance value.

Mixing the two formulations described above, we get the formulae for the dynamic
geometrically non-linear analysis:

tK̃ δd(i) = t+∆tR̃(i−1) (11)

tK̃ = tK + a0M + a3C (12)

t+∆tR̃ = t+∆tR− t+∆tF (i−1) −M t+∆td̈(i−1) −C t+∆tḋ(i−1) (13)

t+∆td̈(i−1) = a0 ∆d(i−1) − a1
tḋ− a2

td̈ (14)

t+∆tḋ(i−1) = a3 ∆d(i−1) + a4
tḋ− a5

td̈ (15)
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t+∆td̈ = a0
t∆d− a1

tḋ− a2
td̈ (16)

t+∆tḋ = tḋ + a6
td̈ + a7

t+∆td̈ (17)

t+∆td = td + t∆d (18)

the constants used above are:

a0 =
1

β∆t2
a1 =

1

β∆t
a2 =

1

2β
− 1

a3 =
γ

β∆t
a4 = 1− γ

β
a5 =

(
1− γ

2β

)
∆t

a6 = (1− γ) ∆t a7 = γ∆t

The algorithm in Figure 1 summarizes this process.

3 CURRENT OBJECT-ORIENTED PROJECT

As said before, INSANE is implemented in Java, an object oriented programming
(OOP) language. The choice for an OOP language was made because of the various ben-
efits brought by this conception, as the easiness for code expansion and maintenance. One
of the main Java features is its portability. As a language that combines the compilation
and interpretation process, it can be compiled in one operational system or computer and
executed in a different one.

The persistence of data between the three segments of INSANE is done by binary
files or XML (eXtensible Markup Language) files. The XML is a technique of creating
structured data based in a text file. What differs it to other markup language, as HTML,
is the fact that the markup rules are defined by the developer in a most suitable way. It
is also adopted as the standard format for exchanging data via internet, so in the future
it will be possible to make INSANE a web based software.

The INSANE actual implementation is the results of many recent works: [3], [4], [5],
[6], [7] and [8]. The numerical nucleus is formed by interfaces which represent the various
abstractions of one numerical resolution for discrete models, each one with its own class
hierarchy responsible for making its job in processing. Actually, it is organized in function
of the interfaces Assembler, Solution, Model and Persistence, as show in Figure 2.

The Assembler interface is responsible for mounting the second order matrix system,
with which is possible to represent many types of discrete problems (Eq. 19).
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Figure 1: Activity diagram for dynamic non-linear analysis algorithm.
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Figure 2: Organization of INSANE’s numerical nucleus.

A Ẍ + B Ẋ + C X = R− F (19)

The Solution interface is who starts the solution process, possessing the necessary
resources to solve this matrix system, linear or non-linear.

Model contains the data relative to the discrete model to be analysed and provides
Assembler all the information necessary to mount model’s equation, which will be solved
by Solution.

Both Model and Solution communicate themselves with the Persistence interface,
which treats the input data and, principally, persists the output data to the other appli-
cations, whenever it observes a modification of the discrete model state.

This modification observation occurs according to the Observer-Observable design pat-
tern, which is a change propagation mechanism. When an object said observer (which
implements the interface java.util.observer) is created, it is add to an observers list of
some objects said observables (which extends the class java.util.observable). When
a modification in the state of any observed object occurs, the change propagation mech-
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anism is initialized, and the observer objects are notified to update themselves. This
process guarantees the consistence and communication between the observer component
(Persistence) and the observed components (Solution and Model).

It will be presented the main interfaces which compose the INSANE numerical nucleus.
To facilitate understanding, many UML (Unified Modelling Language) diagrams will be
shown.

3.1 Assembler Interface

The Assembler interface (Fig. 3) has the necessary methods to mount the model matri-
ces and vectors according to equation (19). It is implemented by the class FemAssembler,
which is appropriated to the various types of problems which can be modelled by the
finite element method. The FemAssembler class has as an attribute one object of the
type Model, which is the finite element model for which the equation must be mounted.

Figure 3: Class diagram for Assembler.

In the Figure 3, some methods of Assembler interface are shown. When called, these
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methods are capable of providing any part of the matrix system. It is important to cite
the method numberEquations(), which numbers the model’s equations, organizing them
according to the criterion of unknown or prescribed values. In this way, Assembler is
capable of mount, for example, the reduced stiffness matrix. The methods init() and
update() are related to the non-linear analysis process.

3.2 Solution Interface

Once the problem equation is mounted, it is a job for Solution interface (Fig. 4) to
solve it. The classes which implements it are SteadyState, responsible for solving linear
problems, and EquilibriumPath, responsible for solving non-linear problems through a
incremental iterative process.

One object SteadyState has one object of the type Assembler and one object of the
type LinearEquationSystem, which is responsible for obtaining the solution of a linear
algebraic equations system, as the one mounted for the linear static solution (Fig. 4).

The class EquilibriumPath has an object Step, which has the methods for solving
the incremental iterative process, and a list of IterativeStrategy, informed by the
user, which defines the control methods to be used for obtaining the equilibrium paths.
EquilibriumPath does not has an object of the type Assembler, but has the method se-
tAssembler( Assembler) which sets to its object Step an object Assembler for which the
incremental iterative method must be solved. It has also the method execute() which exe-
cutes each step of the process. EquilibriumPath extends the class Observable, because
it is observed by Persistence, and implements the class Observer, because it observes
the state variations of its object Step.

Figure 5 shows the class diagram for Step interface, implemented by the class Standard-
NewtonRaphson, in which the standard Newton-Raphson method is used during the in-
cremental iterative process of the non-linear solution.

StandardNewtonRaphson has all the attributes necessary to obtain the convergence in
the step, emphasizing one object Assembler, capable of informing the matrices and vector
of the equation to be solved in each iteration of the step; one object LinearEquationSys-
tem, capable of solving the linear algebraic equations system of each iteration; and one ob-
ject IterativeStrategy, which represents the current iterative strategy. StandardNew-
tonRaphson also extends the class Observable, being observed by EquilibriumPath.

The convergence is verified through the methods getConvergence() and setConver-
gence() of StandardNewtonRaphson. The method setConvergence() creates an object
Convergence, which, using the method checkConvergence(), calculates the convergence
based in force, displacement, or both, accordingly to what was informed by the user.

In the hierarchy of the interface IterativeStrategy (Fig. ??) are the classes which
represent the various control methods implemented. Each of these has the methods get-
Predictor() and getCorrector() which calculate the load factor for the first iteration and
for the other ones, respectively. Except for LoadControl, all the other classes have one
object of type Step, because they need it to get information about the previous step.
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3.3 Model Interface

The discrete model to be analysed is represented in the numerical nucleus by the
interface Model (Fig. 8). The class which implements Model, to represent in the most
general way possible a discrete model, is formed by object lists and contains access and
manipulation methods for these lists.

Model is implemented by the class FemModel which represents the finite element model.
One object FemModel has lists of nodes, elements, shape functions, integration orders, load
cases, load combinations, analysis models, materials, constitutive models and degenera-
tions. It has also two attributes: a global analysis model of the type AnalysisModel and
an object ProblemDriver. FemModel also extends the class Observable, because it is
observed by Persistence.

Together to the Model interface the classes Node, Element and ProblemDriver are
implemented. Figure 7 shows the UML diagram for the class Node, which has one label and
a collection of values of type java.util.Hash- Map which stores all the node variables, as,
for example, displacements and loads. It extends the class IPoint3d and, consequently,
has all its methods and attributes, Node has also as an attribute one object of this type
representing a point in space. The inherited methods are surcharged to access directly
the IPoint3d object, not the inherited attributes. For example, the method getCoords()
of Node access the object IPoint3d and calls its method getCoords(), obtaining directly
the coordinates of the point in space which represents the node. This process permits the
reutilization of code and simplifies the manipulation of an object Node.

Figure 7: Class diagram for Node.
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In the same way, as an specialization of node, the class ElementNode (Fig. 7) extends
Node and also has an object Node, as well as a collection of values of the type HashMap,
which stores the equivalent forces to element’s body forces. ElementNode surcharges the
inherited methods, accessing directly the attributes of its object Node. For example, its
method getCoords() calls getCoords() of its object Node, obtaining the nodal coordinates.

The class Element represents the finite elements and is extend by the classes Parame-
tricElement and subclasses, FrameElement and ThinPlateElement, which represent,
respectively, the parametric finite elements, framed elements and thin plate elements,
as shown in Figure 9. One object Element has as attributes a list of ElementNode,
which represents its incidence, a list of Degeneration, which represents its integra-
tion points and their geometrical and physical constitution, an object AnalysisModel,
which represents its analysis model, an object Shape, which represents its shape function,
an object ConstitutiveModel, which represents its constitutive model, and an object
ProblemDriver, which stores information relative to the type of problem that the ele-
ment models.

The class ParametricElement has, besides Element’s attributes, one object Integra-
tionOrder which represents its numerical integration order. In its hierarchy are the classes
which represent the parametric finite elements, separated accordingly to their geometry:
uni-dimensional elements, triangular and quadrilateral plane elements, and tetrahedrical
and hexahedrical elements. These sub-classes implement the methods relative to numer-
ical integration (addDegenerations( Degeneration) and initDegenerations()). The class
ThinPlateElement is extended by TriangularThinPlate, which represents the triangu-
lar thin plate finite elements.

The ProblemDriver interface (Fig. 10) has methods necessary to informing Assembler
the contributions of each element in model equation. In its hierarchy are represented the
various problem types which can be resolved by discrete models. In this way, Element
is a very general class, independent of the problem which it can represent, but that is
capable of passing all necessary information to the model.
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4 DYNAMIC GEOMETRICALLY NON-LINEAR ANALYSIS EXPANSION

To implement the dynamic solution, classes which implement the Solution interface
will be created. For the Newmark-β method, a class named DynamicIntegrationSolution
will be implemented. In this way, the diagram of Figure 4 will be modified as shown in
Figure 12.

It will be also necessary to modify the classes which implement Assembler (Fig. 3)
in a way to make them capable of mounting the mass and damping matrices. A class
named DynamicLoading, which inherits the class Loading, will be created to represent,
as its name says, a dynamic loading, as shown in Figure 11.

Figure 11: Modified class diagram for Loading.

A class implementing the interface ProblemDriver and named GeometricallyNonLine-
arSolidMech will also be created. This class will be the responsible for the geometrically
non-linear analysis. It will be very similar to the already existent PhysicallyNonLinearSo-
lidMech class and it will be able to calculate the mass, damping and stiffness (incremental
and total formats) matrices for each element. Figure 13 shows the modified diagram.

The Step interface (Fig. 5) will be implemented by a class name ModifiedNewtonRaph-
son which will represent the modified Newton-Raphson incremental-iterative method.

Naturally, the classes that implement the interface Persistence will also be modified
to include the new attributes and results.

5 CONCLUSIONS

INSANE is a software specially designed to be constantly updated and progressively
improved. Many works have been done with this objective, and all of them achieved
success.

The expansion of INSANE’s numerical nucleus proposed in this paper, aiming to add
the capability of performing a dynamic geometrically non-linear analysis of structures, is
possible because of the object oriented project conceived at the beginning of the develop-
ment of this software.

In a few years, INSANE will be a mature, tested and complete structural analysis
software, with many analysis models and solutions types available.
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